The)
F‘l}%matlc

Ogranuners

Early praise for Mastering SwiftUlI

It was the best of books, it was the worst of books...

» Eddy the Gerbil
Chief Gerbil, Gerbils-r-us

We've left this page blank to
make the page numbers the
same in the electronic and
paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

Mastering SwiftUI

Jim Dovey

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: pending
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—Monthname, yyyy

https://pragprog.com
support@pragprog.com
rights@pragprog.com

For Joanna, Olivia, and Jacob, who let me lock
myself away for many evenings to write this
boolk.

In Memoriam: Oli Glaser
9 March 1977 — 16 February 2020.

The crystal ship has been waiting for you, my
friend.

Contents

Change History xi

xiii

12
14
19
22

23
24
30
36
42
48
54

57
58
63
66
75
81

83
84
90

Contents ® viii

Manually Following Changes in Data 98
100

101
102
106
108
110
113
117
125
128
130
137

139
140
142
143
144
145
148
151
156

159
160
163
166
168
174
179

181
182
183
187
192
197

199
201

Binding to Optional Properties

Contents ® ix

204
208
211
214
219
224
228

Change History

The book you're reading is in beta. This means that we update it frequently.

Here is the list of the major changes that have been made at each beta release
of the book, with the most recent change first.

B1.0: Monthname xx, yyyy

¢ Initial beta release.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Acknowledgments

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Introduction

Story Map

Why do I want to read this?
This chapter will give you a simple overview of the book’s contents and
principal organization. It will also introduce Declarative Ul and some Swift
5.1 affordances such as Property Wrappers and Builders, which are used
to implement several core SwiftUI features.

What will I learn?
A simple overview of declarative Ul design and a look at the basics of how
this is used by SwiftUI. You'll also learn some features of Swift 5.1 that
are used by SwiftUI.

What will I be able to do that I couldn’t do before?
You'll be able to discuss the merits of declarative Ul coding and how it
differs from the model used by UIKit and AppKit. This knowledge will help
you understand the new language features which enable some of SwiftUI's
capabilities and syntax.

Where are we going next, and how does this fit in?
Up next is the description of the application you’'ll be building during the
remainder of the book. The application is a basic to-do list / GTD appli-
cation; it was chosen because you can start with canned List-based
interfaces, and grow it to include several customized views and interac-
tions.

SwiftUI arrived to the surprise of many on June 3, 2019 at Apple’s WorldWide
Developer Conference (WWDC) in San Jose, California. There had been some
rumblings suggesting a new UI framework in the prior couple of years, but
most attention was focussed on the Catalyst project, which would allow iPad
applications to be built for and deployed on macOS. When that was officially
announced at WWDC, everyone relaxed, not expecting anything else along

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Introduction ® xvi

those lines. Then came the big reveal: there was a new Ul framework written
entirely in Swift, and it worked on all of Apple’s platforms.

This new framework hit all the right buttons, reflecting as it did much of the
programming world’s zeitgeist of the prior few years:

e The Swift Programming Language. Swift was becoming popular, and its
design implemented a number of features that Apple’s older Objective-C
language did not, such as true generics, protocol-oriented programming,
built-in block syntax, first-class functions, and high-level value types with
member functions and visibility.

e Immutable Types. By making use of immutable types, a lot of the complex-
ity of dealing with data in multi-threaded applications disappears. Data
changes atomically at a larger logical scale, rather than by smaller
piecemeal updates.

¢ Declarative Syntax. SwiftUI's users would be able to describe their inter-
faces in a declarative manner (one of these on top of one of those, with a
blue background and a picture of a cat) rather than the usual iterative
approach (create a view, set its background color, get a picture of a cat,
make it this big, move it over there). The syntax was more terse, and more
closely matched the logical layout of the interface, with details neatly
tucked away elsewhere.

e Functional Design. Much of SwiftUI's appeal came thanks to its judicious
use of functional programming conventions, using first-class methods
and blocks as part of the UI definition. Amongst other things, this would
enable closure-based event handling code to be written at the point of
declaration, where it’s easy to see and to update.

A Little Ul API History

Since the advent of the GUI in the early 1980’s there have been several different
ways of describing your user interface, from the original Smalltalk implemen-
tation at Xerox PARC through Mac OS, Windows, and Java, up to UIKit and
SwiftUI today. Smalltalk and NeXTstep embraced a fully object-oriented
approach to user interface design, while the classic Macintosh and Microsoft
Windows used procedural APIs implemented in C. Java, by its nature, used
an object-oriented system, albeit one built on top of the procedural systems
provided by the platforms on which it ran.

Working with the interface itself was different on each platform, but the
Interface Builder included with NeXTstep’s developer tools set the course for

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

The Declarative Ul Paradigm ® xvii

the rest of the industry: drag-and-drop layout of user interface elements.
Interface Builder would create serialized representations of the UI, while on
other platforms the tools generally generated actual code in C or Java. Even-
tually the Ul-as-data idea began to expand, though, and we saw Microsoft
use an XML syntax to define Uls for its .NET family of languages, while Java
added JavaFX.

The common thread running through all these APIs is their iterative format.
Though both object-oriented and procedural APIs existed, they all used an
instructional, step-by-step means of describing properties and changes. In
essence the programmers using them were writing precise recipes: “take this,
move it here, give it this color, rotate it, then put this other thing on top, add
an image,” and so on. Tools such as Interface Builder, Windows Forms, and
JavaFX were providing a simpler way to encode these instructions, but any-
thing beyond the purview of those tools would necessitate a switch to a
functionally very different approach to solving the same problem.

The Declarative Ul Paradigm

A primary benefit of a declarative user interface API is that the simpler,
declarative model is used everywhere. In code, and in interface description
files. In fact, with SwiftUI, only code is used, along with some new language
features you’ll meet later, to allow that code to visually mimic that layout to
some degree in the same manner as, say, an XML-based hierarchical
description format. This means that there is only one set of concepts and
tools to learn, and only one way to define and interact with your interface
model.

Apple illustrates the difference between the iterative and declarative paradigms
using the metaphor of a food order. In iterative style, you describe the
instructions on how to make the food, as if describing the entire process over
the phone: “finely chop an onion, two cloves of garlic, and a stick of celery,
then add to the pan with a little olive oil, sauté for five minutes; measure
250g arborio rice;” etc. You're effectively writing a recipe, and relying on the
chef knowing a few things, like how to chop an onion. Declaratively, you're
making an order: “a risotto with fennel and extra parmesan.” The person
you're talking to knows how to make a risotto, you don’t need to tell them.
You just lay out the specifics of your own case.

That last sounds somewhat familiar: it’s the same idea behind the frameworks
approach espoused by the AppKit and UlKit frameworks. You don’t need to
write a main() method that initializes different parts of the system, you don’t
need to write an event-processing loop, you don’t even need to write a function

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Introduction ® xviii

that would receive raw events and dispatch them. The framework handles
that, and does the normal things for you—your app launches and runs
without anything special on your part. What you provide is the customization:
the app will ask “the last window has been closed; should I quit now?” and
you will answer yes or no, but only if you have a preference. The app will ask
“what items should I display in this table?” and you’ll provide the data.

The declarative model used by SwiftUI, then, is a somewhat natural extension
of the existing framework model. The framework knows how to put things
onscreen, and how to work with them; you simply need to specify some
specifics of what should go in what order. The instructions are, ultimately,
still there, but they’re tucked out of sight. If you need to do something very
complex and specific, then (to go back to the earlier metaphor) you write a
recipe and give that to the cook, then you can ask the cook to include that
recipe in your dish: poached salmon, rather than grilled.

Declarative code also fits mental models quite snugly. For example, here’s a
list, where each item contains a stack of two text fields, one on top of the
other, with these fonts:
List {

VStack {

Text("The Title").font(.title)
Text("The Subtitle").font(.subtitle)

}

This code defines a button with some text and a blue background. It also
includes an action that plays a sound when the user clicks or taps the button:

Button(action: { playSound() }) {
Text("Title")
}.backgroundColor(.blue)

Finally, this code display an image within a white circular border with a drop
shadow behind it:
Image("myImage.png")

.clipShape(Circle())

.overlay(Circle().stroke(Color.white, lineWidth: 4))
.shadow(radius: 10)

Example Application

In the remainder of this book, you're going to use SwiftUI to build an iOS
application named “Do It.” You’'ll use a small value-type data model to build
the app for the iPhone initially, but then you’ll move on to iPadOS and its

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Example Application ® xix

greater feature set, adding functionality all the while. Over the course of the
book, you’'ll assemble this application in the following steps:

Chapter One: Layout and Presentation. Here, you’ll build a simple list-
based app showing data in a master/detail format.

Chapter Two: Application Data in SwiftUI. This chapter introduces the
use of the SwiftUI @State type and how it’s used to drive updates to your
interface.

Chapter Three: Modifying Application Data. SwiftUI's tools for handling
state and data modification form the focus of this chapter as you imple-
ment editing tools for our data set.

Chapter Four: List Mutation. Implement filtering for your to-do lists, along
with an update to support delivery of predicates from higher in the view
hierarchy.

Chapter Five: Custom Views and Complex Interactions. SwiftUI provides
special tools for reacting to user input and adapting your views’ size and
location dynamically, all in a concise declarative syntax. Here you'll learn
how these work and what you can do with them.

Chapter Six: Making the Most of the Canvas. In this chapter you’'ll learn
how to make good use of the Xcode canvas as a development tool, using
it to preview the effect various system settings have on your application.

Chapter Seven: SwiftUI on iPadOS. In this chapter you'll investigate the
additional features of iPadOS, contrasting with the similarities to the
existing iPhone application. You’ll work with multiple windows, keyboard
and pointer support, different display options, and lay the groundwork
for drag and drop ready for the next chapter.

Chapter Eight: Implementing Drag and Drop. iPadOS and macOS both
support transfer of data by dragging items into and out of your application.
You'll focus on iPad as you make use of several different approaches to
getting information into and out of the app, implement gestures to open
new windows, and move data between those windows.

Chapter Nine: Core Data and Combine. So far your application has been
defined using only Swift structure types and a global data store. Many
applications deal with a much more complex data store, so here you'll
move to a more easily-modified data model defined in Core Data. You'll
use SwiftUI's Core Data tools to bring in and display your new data, and

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Introduction ® xx

you’ll see how to make good use of CoreData’s predicates to drive your
interface.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

CHAPTER 1

Layout and Presentation

Story Map

Why do I want to read this?
This chapter will teach you how to create a new SwiftUI application, and
how to perform basic layout tasks.

What will I learn?
The basics of creating a List-based interface for displaying ordered data,
using text and images.

What will I be able to do that I couldn’t do before?
You’'ll know how to start a SwiftUI application, and how to create and
manipulate views.

Where are we going next, and how does this fit in?
The next chapter adds a little color to the application as you add a detail
view and look at data propagation and sharing.

It’s time to take your first steps into a bright new world. SwiftUI brings with
it a new way of thinking about user interface development, giving you an
easy-to-use syntax and flexible types that allow you to concisely express your
design.

SwiftUI considers the user interface to be a function of data, and this is how
you’ll need to think of your views. You are no longer putting together an
interface as its own object, and then wiring it into some data with the aid of
controller code. Instead, the SwiftUI View is more akin to a transformation that
is applied to your data and state: when the data and state change, the code
you write for your views provides the instructions for SwiftUI to create an
appropriate on-screen representation of that data. This is why SwiftUI views

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 1. Layout and Presentation ® 2

are struct types, lightweight and all but ephemeral, which in turn makes them
easy to compose together.

In this chapter, you'll start work on the application that you’ll use throughout
the remainder of this book. You'll see what Xcode provides to you when you
create new projects and new SwiftUI views. Youll learn how to use the
building blocks that SwiftUI provides as you build out this application. There’s
a lot to learn, but happily, the framework is concise and internally consistent,
so you ought never to find yourself scratching your head in confusion.

Getting Started

The best way to learn SwiftUI is to work with it directly. In that vein, you'll
immediately start building the sample application. What you create in this
chapter will get modified throughout the course of this book, morphing from
a simple to-do list application to a more complex and interactive project
management tool, with support for every Apple platform.

The first thing to do is to create a new project. Launch Xcode and select Create
a new Xcode project or choose File = New — Project.... Select iOS in the tab bar and
choose the Single View App template. Click Next, and in the next section, name
your project Do It, and ensure that SwiftUl is selected for the User Interface. Finally,
choose a location to save your project, and click Create.

In the early days of the development of the Apple Macintosh computer, the familiar
OK/Cancel dialogs didn’t exist.* The OK button was felt to be too specific to the US
dialect, so the designers settled on “Do It” instead. However, it didn’t test well. People
were clicking on the Cancel button instead, baffling the team. One day, the team
learned the reason when a tester got more and more agitated, eventually asking, “Why
is the software calling me a dolt?”

The team realized that with the Chicago font on the Macintosh, a serif-less capital |
looks a lot like a lowercase L. With the inter-word spacing being fairly compact within
the buttons, people were reading it as Dolt instead of Do It. They changed the text to
OK and found that, against their suspicions, it worked perfectly well in all localizations.

a. https://www.folklore.org/StoryView.py?project=Macintosh&story=Do _It.txt

teeoibouassnenasersersorsorasussesecerssePoresraseshetoslosestessrssseserssrsascossorssrssneessorserThossnss

report erratum -« discuss

https://www.folklore.org/StoryView.py?project=Macintosh&story=Do_It.txt
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Learning the SwiftUl Basics ® 3

Learning the SwiftUl Basics

SwiftUI takes a layered approach to interface programming. It tries to make
the most common actions simple and quick, reserving complexity for the edge
cases. You'll see this as you look at the sample view created by Xcode.

From the Project Navigator, select the ContentView.swift file to open it. You'll see that
by default, there’s a two-pane editor rather than the single text editor of ear-
lier Xcode versions. To the left is the source code editor; to the right lies a
new pane known as the canvas.

The canvas allows you to immediately see the results of any changes you
make to your view code in the editor. Additionally, the canvas acts rather like
Interface Builder in that you can select and edit components, and you can
drag and drop existing items and new ones from a palette. Initially, though,
it’s not running. When you make changes to a view file outside of the body
property implementation, the canvas will pause. Click the Resume button at
the top right of the canvas to see your view.

By default, the canvas shows an iPhone containing your view as its sole
content:

// Contentview.swift

/I Created by Jim Dovey on 11/25/19.
/7 Copyright © 2019 Jim Dovey. All rights reserved.
1

import Swiftul

Hello, World!

5 @ Text 100%

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 1. Layout and Presentation ® 4

Currently, there’s only the “Hello, World!” text centered within the screen.
Look at the editor to the left, and to the body property implementation. It
contains the code Text("Hello, World!") and nothing more. Change the string value
to "Hello, SwiftUl!", and notice how the canvas immediately updates to reflect
your change.

View Types
Look at the type declaration for ContentView:

struct ContentView: View {
«implementation>

}

This type formulation is a little different from UIKit and AppKit. In earlier
frameworks, all views and controllers have been class types, meaning they
have reference semantics. Each instance exists once in memory, and other
items reference that single instance. Here, though, you have a struct type,
which uses value semantics. It can be mutable or immutable, and its contents
are copied into new instances on assignment, making each copy independent.

Now, this may sound counter-intuitive. After all, you might reason that a view
is showing something on the display, and so you want reference semantics
to make alterations to that. This is a reasonable way to do things, though it
doesn’t scale as well as it might. Once a view has become sufficiently complex
(as most UIKit views are, for instance), there’s a lot of disparate state informa-
tion held by each one, and there’s no simple way to guarantee ordered updates
to that state.

Consider how this is affected when you introduce animation: each animatable
piece of state information has both a logical value (where it’s going) and con-
crete value (where it’s at this moment in the animation). When you set a view’s
alpha component from 1.0 to 0.0 with a two-second animation, then the alpha
may logically be 0.0, but the concrete value is changing over time, and after
one second may likely be closer to 0.5.

Alternatively, the logical value might remain at 1.0 until the animation is done.
How does this affect future changes that look at the alpha value to make
decisions, such as whether to enable complex blend modes? The alpha will
be zero, quite soon, but isn’t yet. Now you have to think about whether you’ll
allow interaction, for example, during the animation—do you disable interac-
tion before the animation and restore it if the animation fails to complete?
Do you only disable it after the animation succeeds?

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Learning the SwiftUl Basics ® 5

Yep, there’s quite a deep rabbit-hole there, and it’'s not exactly Wonderland
waiting at the bottom.

SwiftUI works around this by using value types to describe all views. In effect,
what SwiftUI calls a view is more accurately a view description. When state
associated with a view is updated (as you'll see in Dynamically Ordering List

new description—which incorporates the new state. SwiftUI then ensures
that all of these changes are applied together, in a single logical step. It can
coalesce multiple state changes together into a single update, and it can take
ownership of state change animation to directly manage the concrete values
displayed on screen. One result of this is that state change animations are
always reversible and always adjust correctly when state is mutated multiple
times during an animation. Your description specifies the logical end state,
and SwiftUI works out how it should get there.

Opaque Types and Implicit Returns

The ContentView conforms to the View protocol. As a value type, it can’t inherit
from a parent class, but it can take advantage of Swift's ability to define
default implementations for protocol members. As a result, defaults for every
method on View exist already, with the exception of the body property, which
you must provide, and is present in the template:

var body: some View {
Text("Hello World!")
}

Here, again, are some things that look a little different to the Swift you know.
First, the code implementing the property relies on a new feature in Swift 5.1
called implicit return statements. For a while now, Swift's block syntax has
contained a shorthand: when a block contains only one expression, then the
result of that expression is implicitly returned from the block. That has enabled
brief and easy-to-read code such as the following:

names.map { $0.uppercased() }

From Swift 5.1 onwards, this shorthand is available for all functions and
property accessors that match the requirements: a single expression gets an
implicit return added for them by the compiler:

func uppercase(name: String) -> String {
name.uppercased ()

}

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 1. Layout and Presentation ® 6

With this facility, SwiftUI code now looks the same whether nesting via an
inline block or returning from a bespoke function, keeping the syntax visually
similar and code directly interchangeable between different locations.

Implicit return statements only work for single-statement implementations,
though. Try adding let x = 0 at the top of the body implementation and you’ll
see a compiler error appear. With more than one expression in the method
body, you need to use an explicit return keyword.

Secondly, it uses an opaque return type, which helps deal with protocol-based
types in an efficient way while maintaining a succinct declaration syntax.

Protocols in Swift are powerful. They can define lots of functionality, can
contain default implementations of methods, and can define some quite
complex behaviors based on associated types. This last feature, however, can
cause some pain. Let’s say you have the following protocol definition:
protocol Identifiable {

associatedtype Identifier: Hashable
var id: Identifier { get }

}

extension Identifiable where Identifier == String {
var uppercaseID { id.uppercased() }

}

Some problems occur when you want to make use of the protocol as its own
type, however:

func doSomething(with: Any) -> Identifiable {
&body»
}

Here the compiler will complain: Protocol 'ldentifiable' can only be used as a generic con-
straint because it has Self or associated type requirements. It can’t determine how to build
this function, because without knowing the actual type of Identifiable.dentifier
that was provided it can’t allocate enough memory, and it can’t tell if initial-
izers and destructors for the associated type are needed.

That’s all very well for the compiler, but you just want to say that you want
some sort of Identifiable to be returned. You don’t care exactly what, and thus
the extra work of making this function generic seems like overhead. Also,
generic protocol wrapper types have some downsides in terms of size and
processing overhead, so this may be unusable within performance-critical
code.

For this reason, Swift 5.1 introduces opaque return types. Adopting them is
as simple as putting the keyword some in front of your return type:

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Learning the SwiftUl Basics ® 7

func doSomething(with: Any) -> some Identifiable {
&body»
}

The compiler is now happy: it will inspect the code inside the function and
determine the actual type being returned. The details of that type will be
known to the compiler and will be used by any functions calling this one, but
will be hidden from the programmer, keeping the interface simple and logical.
SwiftUI uses this for its View types; many functions return some View.

Note that opaque return types only hide complexity in terms of the return
type’s name. If you actually return an _IdentifiableDictionary<String, Array<Int>> then
that’s the actual return type of your function, not ‘any Identifiable.” Thus your
code can only return instances of that one type. They can’t optionally return
one of two distinct types, each conforming to the same protocol. Thus, in
SwiftUI you'll implement a body property that returns some View, but you'll
actually return a Text, or an Image, etc.

In SwiftUI, the result of the body property says that it will always return a
single particular type, but it will at least conform to the View protocol. In Con-
tentView, the compiler infers from the body implementation that the type returned
is actually a Text instance, so the compiler will create storage enough to return
that. Any code that calls this method will receive a thing that implements
everything in the View protocol and takes up the amount of storage needed
for a Text instance. This avoids the existential type wrappers around a pure-
protocol instance—which quickly become expensive for any types larger than
24 bytes.

This has a secondary effect of ensuring that only a single type can be returned
from a method, even though your API simply indicates that it returns ‘some
sort of View’. To see what this means, replace the contents of body with the
following:

if (Bool.random()) {
return Text("Hello World!")
} else {

return Text("Hello SwiftUI!")
}

This works fine, and the canvas displays one of the two text items at random.
No matter which path the execution takes, the result will be the same size.
Now, replace the content of the else clause with the following:

return Image(systemName: "iCloud")

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 1. Layout and Presentation ® 8

This code generates an error because the compiler detects that no single type
is returned:

var body: some View { @ Function declares an opaque return type, but the return statements in its body do not have matching underlying types
if (Bool.random()) {
return Text("Hello World!") © 1. Return statement has underlying type 'Text'
} else {
return Image(systemName: "icloud") © 2. Return statement has underlying type 'Image’
}
}

Since the Image and Text types aren’t necessarily the same size, the compiler
can't provide a single return type. Remove some from the property’s declaration
and attempt to build the project—maybe you can return an existential
‘property-only’ type. Notice you get an error:

Protocol 'View' can only be used as a generic constraint because it has
Self or associated type requirements

You've seen this one before, on page 6. It means that a return type of View
alone doesn’t provide enough"‘.cif.ﬁéuiﬁfal:r.nation to the compiler. There may be
methods that are available only if the instantiated view (the Self type) conforms
to Equatable, for instance. Perhaps it contains a member variable of some
associated type, and without knowing that type, the compiler doesn’t know
how much memory it will take up. Opaque types solve this problem, allowing
you to specify that while you (as the programmer) only care about conformance
to View, the compiler can actually see a real type, in this case Text, and can
handle it appropriately. The compiler knows how big the return type is, and

can signal that size to the caller.

Now revert the method back to its original format: use some View for the return
type, and replace the Image with a Text. The errors should then disappear.

View Modifiers

In the world of AppKit and UlIKit, adjusting a view is a matter of creating your
view and then setting values for various properties. The following code likely
looks familiar:

let label = UILabel()

label.text = "Hello World!"

label.textColor = .green

label.font = UIFont.preferredFont(forTextStyle: .largeTitle)

In SwiftUI, things happen differently. One of the benefits of using value types
is their innate immutability, which allows for much safer code. To keep that
benefit, rather than using a mutable View instance and changing its contents,
you create an immutable one and call a function to obtain a new immutable
view reflecting your changes. For further modification, you call a function on

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Learning the SwiftUl Basics ® 9

that view to receive another, and so on. This is known as chaining, and it
makes for some nicely-readable code:

Text("Hello World!")
.foregroundColor(.green)
.font(.largeTitle)

Make those changes to the Text view in your editor, and you’ll see the changes
reflected immediately on the canvas.

3 -click on the view in the canvas, and you're presented with a pop-up menu
containing numerous options. You'll explore these in full later, but for now,
select the first option, Inspect..., to reveal a floating inspector palette for the
view:

Text

Hello World!

Modifiers
Font
Font Large Title

Weight Inherited

Color | Green

Alignment

. E‘mwm

Line Limit | -

Padding

Padding -

+

Here, you can change the value of the displayed text, adjust its font, weight,
alignment, padding, and more. Scrolling down, you’ll see a Foreground Color
section containing a pop-up menu. Use this menu to select a new color. Your
canvas will update to show the new color, and in the editor, you'll see that
the code was altered to reflect the change. In SwiftUI, the code is the source
of truth; .xib files aren’t used to create and layout views now.

The inspector is also available directly from the code editor. 3-click on the
Text initializer to see a similar pop-up menu, and again, select Inspect... to
see the inspector. This time, change the font to Headline and note how the
code and canvas both update to reflect the change. Open the inspector again,
and this time set the font to Inherited. Your canvas updates to use the default
font, and in the editor, the .font(.headline) line is removed. Do the same for the
Foreground color.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 1. Layout and Presentation ¢ 10

Lastly, 3 -click on the Text view and select Embed in VStack from the popup
menu. Your body implementation should now look something like this:

VStack {
Text("Hello World!")
.foregroundColor(.purple)

}

The body property now returns a VStack view, which itself contains a Text view.
The contents of the stack view are provided by a block, and in this case, it's
a rather special block: a ViewBuilder. A ViewBuilder is a type of function builder,
another new feature in Swift 5.1 that’s put to heavy use by SwiftUI to provide
its declarative syntax. This is what allows us to simply list out the contents
of a stack view without using functions like append(view) all over the place:

VStack {
Text("First")
Text("Second")
Text("Third")
Spacer()
Text("Last")

}

This works with a new attribute, @functionBuilder, which enables the creation
of types that convert a series of inputs into a single output. The type of the
block passed to the VStack in the example above has the @ViewBuilder attribute
attached, meaning that an instance of the ViewBuilder function builder will be
instantiated. The compiler will then collect the results of all expressions
within the block which weren’t otherwise assigned and will pass all those
values into the builder, and the builder will, in turn, examine each one and
return them as an array to the VStack initializer.

Managing Long View Lists

Function builders work by converting each statement within their
braces into a parameter to a single function. Because of this, if
there are 20 statements, the creator of the function builder needs
to provide a function taking 20 parameters. In the case of ViewBuilder,
implementations are provided for up to 10 parameters at once. If
you want more subviews, you'll need to break up your content a
little by assembling them into Group views, each containing ten or

o

less subviews.

Drag & Drop Modification
In the Xcode toolbar, click the + button to view Xcode’s Object Palette:

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Learning the SwiftUl Basics ® 11

Q 8 5
@ =0k @

‘‘‘‘‘‘‘ List

A container that presents rows of data arranged in a single column.

Control Views
L) e

Edit Button - -
List<SelectionValue, Content>
SelectionValue : , Content :
Form
Open in Developer Documentation
Group Box

Horizontal Split View

List

Menu Button

Navigation Link

SO00M0O®@mMOE

Navigation View

If you're familiar with Interface Builder, this will look similar, but since you're
working with SwiftUI, the first two tabs are different. The leftmost tab,
selected by default, contains views. Double-clicking one of the views listed
there will insert it at the cursor position. You can also drag views onto the
canvas or the code editor to place them precisely where needed.

Drag out a new Text view, and place it below the existing one inside the VStack.
If you drag it onto the canvas, a message will appear describing what the
operation will do. By default, it creates a new VStack containing both the new
item and the existing view (already a VStack). Dragging it into the editor will
cause an empty line to appear, ready for you to drop it into place.

You now have a pair of Text views; let’'s modify their content and appearance
a little. First, replace the placeholder text with "Greetings from SwiftUl". Then, open
the palette again, and this time, select the second tab to reveal a list of
available modifiers.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 1. Layout and Presentation ® 12

Q 2 8
—o
@ = L @
Text Modifiers

Bold Font
Sets the default font for text in the view.

Disable Autocorrection font(_ font: L
Parameters

Flips for Right to Left font The font to use when displaying this text.
Returns

Font Text that uses the font you specify.

Open in Developer Documentation
Font Weight

Italic

Kerning

Keyboard Type

DG BRBBC

Line Limit

Modifiers in SwiftUI are conceptually similar to properties. A modifier to a
Text instance might set its font, or make its text bold. It might set a specific
size for a view, or a background color, or more. Rather than modifying the
content of a view class, a modifier on a SwiftUI view will yield a new view
value with different properties all encoded—and all immutable, and thus
thread-safe.

Scroll down to find the Font modifier, and drag one into the editor. Hover
between the two Text declarations and an empty line will appear. Drop the
font here, and it's appended to the first Text view. Select the default value of
title and replace it with .headline. Repeat the process, this time dropping the
font onto the second text field on the canvas. Again, the editor content is
changed to add a call to .font(...). This time, replace the font with .subheadline.

Working with Layout & Composition

You now have the beginnings of a nice view. Let’s add some more items and
adjust the layout to finish off with something that looks like this:

Hello World!
Greetings from SwiftUl

Currently, you have the pair of Text views vertically stacked on top of one
another. To lay items to the left and right, you'll need a horizontal stack as

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Working with Layout & Composition ® 13

well. You can obtain one by wrapping the existing VStack in an HStack, either
by editing the source code to to put HStack { ... } around the existing code, or
by 3 -clicking the VStack and selecting Embed in HStack.

Open the views palette and drag a Circle into the HStack, above the VStack. 36-click
on the circle you just added and set its width and height to 40. Now change
its color to blue by appending .foregroundColor(.blue) in the editor:

Circle()

.frame(width: 40, height: 40)
.foregroundColor(.blue)

Following the VStack, add an image using one of the built-in SF Symbols values,
and set its color to green:

Image(systemName: "star.fill")
.foregroundColor(.green)

At this point, everything is squashed together in the center of the canvas:

Hello, World!
Welcome to SwiftUl!

To add some space between the text and the star image, SwiftUI provides the
Spacer view. Drag one from the palette between the VStack and Image, or simply
type Spacer() in the editor on a new line above the Image initializer.

This almost looks right, except for two things. First, the two lines of text
appear to be centered with respect to one another. Second, the circle and the
star are both tight against the edges of the screen on the canvas, which doesn’t
look very pleasing:

Hello, World!
Welcome to SwiftUl!

To solve the first problem, you need to tell the VStack how to horizontally align
its contents. By default it uses .center, but you can easily change that either
via the inspector or by editing the call to its initializer directly, like so:
VStack(alignment: .leading) {

«<content”»
}

The two text fields are now left-aligned next to the circle. The only remaining
step is to pull in your view’s content from the edges of the screen. To do this,
you can append .padding(.horizontal) to the HStack’s declaration, after the closing
brace. Alternatively, you can use the inspector, selecting the left and right

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 1. Layout and Presentation ® 14

checkboxes in the Padding section, which will insert the relevant code for
you.

Now, the view should look correct, and your code should look something like
this:
HStack {

Circle()

.frame(width: 40.0, height: 40.0)
.foregroundColor(.blue)

VStack(alignment: .leading) {
Text("Hello World!")
.font(.headline)
Text("Greetings from SwiftUI")
.font(.subheadline)

}
Spacer()

Image(systemName: "star.fill")
.foregroundColor(.green)

}
.padding(.horizontal)

Handling Data Presentation

Your applications won’t be creating user interfaces from whole cloth. You'll
be working with some sort of data, and your user interface will present that
data to your users. For this application, you're going to use to-do items, which
you'll initially present in a list, then later in a detail view and an editor.

In the downloadable code bundle for this book' is a folder name Model; add
this to your project, being sure to check Copy items if needed and Create groups.
Inside the imported folder are four files, which you’ll use throughout this
book; in this chapter, you’'ll only need to think about two of them: Todoltem.swift
and StaticData.swift.

Open Todoltem.swift to see two types defined there: Todoltem and TodoltemList. You’ll
use the list type in the next chapter, so for now, take a look at Todoltem; its
interface looks something like this:

struct TodoItem: Codable, Identifiable, Hashable {
var id: UUID
var title: String
var priority: Priority
var notes: String?
var date: Date?

1. https://pragprog.com/titles/jdswiftui/source_code

https://pragprog.com/titles/jdswiftui/source_code
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Handling Data Presentation ¢ 15

var listID: UUID
var completed: Date?

enum Priority {

& ... »

}

var complete: Bool {
& ... »

}

}

The structure is very simple, and you’ll be working with it over the next few
chapters. It contains a UUID (Universally Unique IDentifier) as an identifier,
a title, and an enumeration representing its priority. Optionally, it may have
associated notes a due date, and the date on which it was completed. Lastly,
it contains the UUID of the TodoltemList that contains this item.

The definition takes advantage of some automatically synthesized confor-
mances here, as well. First, since all of the properties are simple types, it gets
free Codable support. Second, by conforming the Priority enumeration to the
Caselterable protocol, the compiler synthesizes an allCases static property, which
will return a list of all the enumeration’s values, in the order they appear in
the source code. This is particulatly helpful in a UI application if you want to
display a list of available priorities, for example.

Some sample data is also provided in the book’s code archive, in the sample-
data folder. Drag the file todo-items.json from there into your project; this might
also be a good opportunity to create a separate “Resources” group to contain
this and the other assets from the application, though see Info.plist Trouble,

on page 15 for some important information when you do.

The JSON format of a to-do item looks like this:

"id": "63A3B756-BCBC-4EA3-8A35-A52462B24604",

"title": "Complete SwiftUI book sample",

"priority": "high",

"notes": "Use parts of the initial setup tutorial, to demonstrate how I plan to introduce and ex|
"date": "2019-08-03T16:30:00-0500",

"listID": "B930B8BB-3804-440D-89ED-6F3E4DDCE22A",

"completed": "2019-08-05T12:14:51-0800"

In general, any file referenced in Xcodes project navigator can be moved around
within that navigator and everything will work out Just Fine™. Alas, for one particular
file that’s not true: Info.plist, while it’'s handled normally as a resource file, is also ref-

report erratum -« discuss

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 1. Layout and Presentation ® 16

erenced directly by a build setting—which includes the file’s path. By moving it into
a sub-folder, you'll break that build setting, and thus the build.

There are two ways around this:

1. Define the Resources group using New Group without Folder (~"_38N); the group will
exist in the project navigator, but the contents on disk won’t move.

2. Select the Do It project in the project navigator, then the Build Settings tab, then edit
the value of the Info.plist File setting to include the new folder (e.g. Do
It/Resources/Info.plist).

Which approach you use is entirely up to you; Xcode will perform identically either
way.

The initial view for the app will show a list of to-do items. In UIKit, you’d use
a UlTableView, UlCollectionView, or a UlStackView to accomplish this. However, in
SwiftUI's concept-based nomenclature, you have the List view, which on iOS
can create views analogous to a UlTableView.

Start by creating a new group named Views, and within there create a new
SwiftUI View file, naming it TodoList.swift. Open this file and resume the canvas
to see the familiar ‘Hello World’ template code. Wrap the Text declaration in a
call to List, like so:
List {

Text("Hello World!")
}

The canvas now displays a familiar table view containing a single row with
some text and a number of empty cells. You can repeat this cell by passing
a sequence to the List initializer. The block is then invoked once for each ele-
ment in the sequence, with that element passed as a value. You can use a
Range to tell the list to generate multiple rows. Change your code to match the
following:

List(0..<5) { num in

Text("This is row \(num)")

}
Your canvas should now display five rows, each announcing their row number.

This, as it turns out, is everything you need to display the to-do items. All
that’s left to do is pass in the todoltems list defined in StaticData.swift to the List
initializer and reference each item in the supplied block:

List(todoItems) { item in

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Handling Data Presentation ® 17

Text(item.title)

Verbatim vs. Localized Strings

In AppKit and UlIKit, strings were just strings. If you wanted to localize the title of a
button, you had to call NSLocalizedString() to look up a localized version of that string
for the user’s current locale. When developing, though, that’s a lot of extra typing,
and it’s not uncommon for developers to skip the call when starting their app or when
trying things out. However, as the project gets larger, it becomes more and more dif-
ficult to remember where you need to go back and insert those localization calls, and
inevitably, something slips through the net.

SwiftUI takes the opposite approach. Any inline strings (e.g. "Hello") passed to the Text
initializer are automatically considered localizable. What’s more, it automatically
converts from Swift’s string-interpolation format to the numbered-parameter format
used by string localization (i.e. "Hello \(name), the current time is \(time)." becomes "Hello %$1,
the current time is %$2."). String variables (e.g. self.name) are presented verbatim automat-
ically. When you know a static string should not be a candidate for localization, use
the Text.init(verbatim:) initializer to skip all that; this should be the default for any text
that comes from your user’s data. Conversely, when you want a string variable to be
localized, use it to initialize a LocalizedStringKey, e.g. as Text(LocalizedStringKey(str)).

You now have a basic list of to-do items.

Complete SwiftUl book sample

Feed the cat

Buy food for Friday night

Send final draft to editor

It's worth looking under the hood a little, though, to answer a pertinent
question: how does SwiftUI know to associate a given item with a given row
in the list?

The answer is in the Identifiable protocol, to which Todoltem conforms. This simple
protocol has only one requirement: a property named id whose type conforms
to Hashable (and thus Equatable):

public protocol Identifiable {

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 1. Layout and Presentation ® 18

/// A type representing the stable identity of the entity associated
/// with “self’.
associatedtype ID : Hashable

/// The stable identity of the entity associated with ‘self’.
var id: Self.ID { get }
}

If you're working with a type that doesn’t conform to Identifiable, though, you
can always supply a suitable identifier as a key-path; for enumerations or
Strings, for example, you’d use \:self like so:

List(["Hello", "World"], id: \.self) { « ... » }

Let’s make some small changes to give the view some more flavor. First, set
the title’s font to .headline by appending .font(.headline). Now, wrap it in a
VStack(alignment: .leading). Lastly, inside the vertical stack block, check if the
item’s notes are non-nil, and if so, declare another Text containing those notes,
using the .subheadline font. Your list content should now look like this:

VStack(alignment: .leading) {
Text(item.title)
.font(.headline)

if item.notes != nil {
Text(item.notes!)
.font(.subheadline)

Author’s Note
At present the allowed syntax for builder blocks does not include
the if let construct, which is why you can’t use a more idiomatic if
A let notes = item.notes. Hopefully this can be rectified with a future
compiler update, but until then this check-and-explicitly-unwrap
is the only straightforward option within a @ViewBuilder block.

Each row contains a nicely presented title and potentially the notes as well:

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Adding Navigation ® 19

Complete SwiftUl book sample

Use parts of the initial setup tutorial, to
demonstrate how | plan to introduce and explain
new code.

Send final draft to editor

Choose cover image

Feed the cat
Don't forget her medicine.

Adding Navigation

Now that you have the items displaying nicely, you want to be able to interact
with them. The normal way of doing this is to place the list within a navigation
view and to make each row tappable. Tapping on the row then presents a
new view via the parent navigation view.

First, let's make the rows interactive. In AppKit or UIKit, you'd likely set a
property on the view to mark it as interactive, and then you'd add a tap gesture
recognizer, you'd set a target and action on the recognizer, and so on. Or, if
you're using a UlTableView or similar, you'd implement a method in the UlTable-
ViewDelegate that gets called when the user taps on a row. In SwiftUI, things
happen differently.

As you've seen, SwiftUI prefers to describe things in a more abstract sense.
Thus, for navigating, rather than setting some values on some view, you tell
SwiftUI to use a NavigationLink. This view uses a view-builder block to define its
content, so it can simply wrap the VStack you're already using. It exists for the
simple purpose of responding to single taps by pushing some new View onto
a navigation stack. It also, depending on the platform, includes some extra
subviews that indicate its nature, such as the trailing-edge chevron image
used by navigable UlTableView rows.

Wrap your VStack in a new NavigationLink, providing a simple Text view as its
destination:

List(todoItems) { item in
NavigationLink(destination: Text(item.title)) {
VStack {
«<content»

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 1. Layout and Presentation ® 20

}

Your canvas will immediately reflect the change:

Complete SwiftUl book sample

Use parts of the initial setup tutorial, to
demonstrate how | plan to introduce and explain
new code.

The trailing-edge chevron was added to each row, but for some reason the
text appears to be using a more muted gray color. Launch a live preview from
the canvas by clicking the play button on the lower right, then try clicking
on the rows.

Nothing’s happening, it seems. The reason for this is tied to the sudden color
change on the text. All the NavigationLink views are in their disabled state.
Glancing at the code, can you see why?

You're missing a NavigationView. The NavigationLink view must be inside a navigation
view in order to function. Not finding one, it automatically adjusts its display
to indicate that it’s disabled and will not function. This is easy enough to
remedy. Wrap the List in a new NavigationView:

NavigationView {
List(todoItems) { item in
«K..»

}
}

With that code, your preview comes alive. The text is in the correct color, and
clicking on the rows in the live preview pushes a new view containing the
item’s name. You can navigate in all the usual ways, whether with buttons
or by swiping backward and forward.

There’s a large space at the top of the list view now, though, and the back
button doesn’t look very interesting. Normally you'd set a title on a view for
the navigation view to use; the same is true in SwiftUI, though naturally
rather than setting a property, you'll be chaining a call to your List view’s
declaration (the List is the root view displayed by the NavigationView). After the
list’s closing brace, append the text .navigationBarTitle("To-Do Items"). Your list now
has a title, and when you click on a row in the live preview, you’ll see that
the title animates into the place of the back button in the expected manner,
and animates back to title position when you back out to the list again.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Adding Navigation ® 21

It’s time to clean up the Ul a little by styling the list view. By default, the list
uses a plain list style, described by the PlainListStyle class, but you can change
this by chaining another call. Use .listStyle(GroupedListStyle()) to modify your list’s
appearance, and you’ll get a more muted background behind the title and
status bar, and any blank rows disappear from the list.

At this point, your body implementation should look like this:

1-LayoutPresentation/Do It/Views/TodoList.swift
var body: some View {
NavigationView {
List(defaultTodoItems) { item in
NavigationLink(destination: Text(item.title)) {
VStack(alignment: .leading) {
Text(item.title)
.font(.headline)

if item.notes !'= nil {
Text(item.notes!)
.font(.subheadline)

b
}
.navigationBarTitle("To-Do Items")
.listStyle(GroupedListStyle())

}

struct TodoList_Previews: PreviewProvider {
static var previews: some View {
TodoList()
}
}

The canvas should look similar to this:

http://media.pragprog.com/titles/jdswiftui/code/1-LayoutPresentation/Do It/Views/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 1. Layout and Presentation ® 22

To-Do Items

Complete SwiftUl book sample

Feed the cat
Don't forget her medicine.

Buy food for Friday night

Send final draft to editor

Not bad for a dozen or so lines of code, I think!

What You Learned

Writing user interface code with SwiftUI is quite different than using UIKit or
AppKit. By now, you should be familiar with the new building blocks that
you’ll be using going forward:

e The Xcode canvas and inspector, for visual feedback on your Ul

e Xcode’s palette, allowing for drag-and-drop interface design.

e Modifier methods and immutable value types, rather than shared reference
types with world-mutable properties.

¢ A clean, terse programming syntax for quickly sketching and prototyping
your interfaces.

In the next chapter, you'll flesh out the application a little more by assembling
a detail view for your to-do items. Along the way, you’'ll learn about SwiftUI's
layout system, and you’ll get a feel for just how much functionality SwiftUI
gives you for free.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

CHAPTER 2

Application Data in SwiftUl

Story Map

Why do I want to read this?
To see how you can use SwiftUI to present and interact with hierarchical
data models.

What will I learn?
How data is handled within the SwiftUI ecosystem, and how changes to
that data are used to update your user interface.

What will I be able to do that I couldn’t do before?
You will now have a greater command of the major building blocks of user
interfaces in SwiftUI. You'll be able to take a design and build it declara-
tively in code, and you’ll be able to respond to changes in the underlying
data model.

Where are we going next, and how does this fit in?
In the next chapter, you'll implement editing functionality for your appli-
cation, and learn how SwiftUI manages mutable data.

In the last chapter, you created a simple to-do list application in a few lines
of code. Now that you have some familiarity with the canvas and inspector,
and know how to use view modifiers, it’s time to look at two more involved
tasks. First, you'll handle user input, making adjustments to your user
interface to match. Second, you’ll compose a more detailed view using stacks
and more. The data model has been updated slightly, adding support for lists
with icons and associated colors, letting you create a simple detail view that
really pops. Along the way, you’ll encounter some of the vagaries of SwiftUI's
data and layout flow, and learn how best to deal with them.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 2. Application Data in SwiftUl ¢ 24

This chapter builds on the code developed during chapter 1, but makes use
of some additional helpers. You can follow along by using the starter project
for this chapter, which can be found in the source code download' in the
folder 2-ApplicationData/starter. Code for the completed chapter can be found in
2-ApplicationData/final.

Interaction in Lists

Now that your data model has some extra information, let’s present it to the
user. You'll add a button in your item rows to toggle that item’s completion
state, and you’ll color the button according to the color of the item’s list. First,
though, the code for your list view has rather a lot of levels of indentation.
Let’s fix that by factoring out the row content itself.

Refactoring

Open TodoList.swift and locate the VStack section inside the NavigationLink() block.
38 -click on the VStack constructor and select Extract Subview:

var body: some View {

NavigationView {
List(defaultTodoItems) { item in

NavigationLink(destination: Text(item.title)) {
VStack (alignment SEERECELELDERY
Text(item.title)

ine)

Q Actions

2= Jump to Definition ~gg | nil {
tes!)

® Show Quick Help X BEeacinne)

2% callers...
: Edit All in Scope
® Show SwiftUl Inspector... A\
1 Embed in HStack
B3 Embed in VStack
} P Embed in List
stz| B4 Group A
Z1 Make Conditional
@ Repeat

}

This will add a new struct at the bottom of the current file and let you choose
its name—use TodoltemRow. You should end up with the following definition:

struct TodoItemRow: View {
var body: some View {
VStack(alignment: .leading) {
Text(item.title)

1. https://pragprog.com/titles/jdswiftui/source_code

https://pragprog.com/titles/jdswiftui/source_code
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Interaction in Lists ® 25

.font(.headline)

if item.notes != nil {
Text(item.notes!)
.font(.subheadline)

}

The compiler is likely alerting you about the item variable used to fill out the
row’s content; you need to pass that into this new view, which means you’ll
need somewhere to store it. Add a property for this to the:

let item: TodoItem

You don’t need a var here since there’s no plan to modify the data. You just
need an immutable copy of the data from which you’ll read the details you
need to provide the view when the framework requests it.

Now the editor will note that you need to pass an argument when creating
the row from within your TodoList. Use the fix-it suggestion to pass in the cur-
rent item:
NavigationLink(destination: Text(item.title)) {

TodoItemRow(item: item)

}

Let’s neaten up the source code a little at this point. Select the entire
TodoltemRow type and cut it from the document (3-X). Now create a new SwiftUI
View file inside the Views group, named TodoltemRow.swift. Finally, replace the
TodoltemRow definition in that file with the one you just cut out of TodoList.swift.

The editor will draw your attention to the preview provider at the bottom of
the file. The TodoltemRow() initializer call requires a Todoltem parameter. Replace
the offending line with:

TodoItemRow(item: defaultTodoItems[0])

Now you can launch the preview, and you’ll see a two-line list row rendered
on the canvas. Alas, it’s centered in a screenful of white:

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 2. Application Data in SwiftUl ® 26

Complete SwiftUl book sample

Use parts of the initial setup tutorial, to demonstrate
how | plan to introduce and explain new code.

To remedy that, you'll need a customized preview layout. You do this with
the previewLayout() modifier. This modifier takes a single argument of type Pre-
viewLayout, which comes in three flavors:

e .device. This is the default, and it centers the preview within a container
matching the size of the device being used on the canvas.

o fixed(width:height:). Centers the preview in a container view with the specified
dimensions.

* sizeThatFits. Offers the preview the size of the current preview device, then
fits the container to the size chosen by the preview. This will allow it to
fit itself into any size that will fit on the screen of the current device, but
no larger.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Interaction in Lists ® 27

For this example, the sizeThatFits layout works best, because it provides a flex-
ible width that will max out at the width of the device’s display. You'll see
how to alter the device used by the canvas in Using Device Previews, on page

select your chosen layout.

Completion

A real to-do item row would have one attribute that is currently lacking here:
a button to mark the item completed. Let’s follow the example of the built-in
Reminders application and use a button whose icon is either an empty or a
filled circle, depending on whether the item is complete.

First, you need to embed the current VStack inside an HStack, and then you can
add the button at the front of the new stack:

2-ApplicationData/final/Do It/Views/TodoltemRow.swift
HStack {
Button(action: {
/] K L. »

H Ao
Image(systemName: item.complete
? "largecircle.fill.circle"
1 "circle")
.imageScale(.large)
.foregroundColor(.accentColor)

}
.padding(.trailing, 6)

VStack(alignment: .leading) {
V2

}

Complete SwiftUl book sample

@ Use parts of the initial setup tutorial, to
demonstrate how | plan to introduce and
explain new code.

The button’s action needs a little more work. The infrastructure to edit the
item isn’t yet in place, so instead, you’ll pop up an alert when the button is
clicked, to prove that it’s working. The first part of this is to add a new Bool
property to the TodoltemRow with a default value of false, marked with the @State
attribute.

http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/TodoItemRow.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 2. Application Data in SwiftUl ® 28

The row needs to keep track of its item’s completion state in order to update its
appearance when it changes. SwiftUI provides support for this through a property
wrapper named @State.

Swift has a few special keywords or attributes that can be applied to properties to
induce certain behavior. For example, the lazy keyword causes a property to be initial-
ized lazily—i.e., only when first requested. The @NSCopying attribute for properties of
an Objective-C type will cause that type to be copied rather than retained during the
assignment to the property.

Swift 5.1 democratizes these features by allowing the programmer to specify their
own wrapper types for properties. These are classes or structures marked with the
@propertyWrapper attribute and which obey certain rules. The compiler then allows the
use of these as attributes on property declarations, and silently uses the wrapper
type under the hood.

You'll see this a lot in SwiftUI. It's used there to define state variables (via the @State
wrapper attribute) and bindings (@Binding) and more. It's also used to great effect in
the Combine framework, which you’ll encounter later in the book as you deal with
more complex data flows.

When you apply the @State attribute to a property in a view, SwiftUI will detect when
its value changes and automatically request that the view update itself by re-fetching

its body property.

Use the button’s action to toggle its value:

2-ApplicationData/final/Do It/Views/TodoltemRow.swift
@State var showAlert = false

var body: some View {
HStack {
Button(action: {
self.showAlert.toggle()

A
V2R S
}
.padding(.trailing, 6)
/] K oL.»

}

To make an alert appear on screen, you use the .alert(isPresented:content:) view
modifier. The first argument takes a binding to a boolean property, and the
second a block that returns an Alert instance. For the former, you'll pass
$showAlert; you'll learn more about this in Bindings, on page 44 and Dependen-

report erratum -« discuss

http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/TodoItemRow.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

YYYVYY

Interaction in Lists ® 29

cy Propagation, on page 60. For the latter, a simple alert with a title, a mes-

sage, and a button to dismiss it:

2-ApplicationData/final/Do It/Views/TodoltemRow.swift
Button(action: {
/K& s>

HA
/K2

}
.padding(.trailing, 6)
.alert(isPresented: $showAlert) {
Alert(title: Text("Complete!"),
message: Text("This will work soon, honest."),
dismissButton: .default(Text("0K")))

}

This tells SwiftUI to monitor the value of the showAlert property, and to present
the alert as long as its value is true. Additionally, SwiftUI will reset the value
to false when the alert is dismissed. Toggling the value to false will also cause
the alert to be dismissed, should you need to do so programmatically.

Launch a live preview in the canvas and click on the button to see your alert
pop up. Dismiss it and click again, and it will reappear. The button works.
In later chapters, you’ll hook this up to the data model directly.

Now return to TodoList.swift and fire up a live preview or launch the app in the
Simulator, and try out all the functionality—everything that worked before
still works now.

http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/TodoItemRow.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 2. Application Data in SwiftUl ® 30

To-Do Iltems

Complete SwiftUl book sample
Use parts of the initial setup tutorial, to
demonstrate how | plan to introduce and
explain new code.

Feed the cat
Don't forget her medicine.

Buy food for Friday night

Send final draft to editor

Unfortunately, not everything you've added is functional. The completion
buttons aren’t doing anything, even though no problems showed up when
testing the item row view alone. Instead, tapping on the button merely activates
the row and its navigation link, and that’s definitely not what you wanted to
happen; marking a task as complete or incomplete is important enough that
it should be a simple one-tap task from the list. So, what’s happening here?

To understand what’s going on, you need to look at SwiftUI's input mechanism
on iOS, the Gesture.

Handling User Input

In SwiftUI, you respond to input—whether directly or indirectly—through a
Gesture of some kind. Gesture itself is a protocol, much of its details internal,
but it requires two or three things:

1. Some Value type that will change as the gesture progresses, if appropriate.
A means to register a callback that will fire when the gesture ends suc-
cessfully, and any action should be triggered.

3. [Ifits Value type conforms to Equatable, then it should allow a callback to be
registered, which will be invoked each time the value changes.

With these base requirements, then, SwiftUI provides us with several gesture
types you can create and use, including TapGesture, MagnificationGesture, LongPress-
Gesture, DragGesture, and RotateGesture. Internally there are many more, and they're

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Handling User Input ® 31

used as the standard means of passing around event information in SwiftUI.
One internal gesture, for example, handles the normal behavior of buttons,
highlighting during touch-down, unhighlighting on touch-up, or if the finger
is dragged out of the button’s frame. Alas, that one isn’t for us to use, but it
gives us a hint as to where to look for the cause of our current issue.

Gestures are attached to the view using one of several modifiers:

e gesture(_including:) attaches a gesture to a view, making it one of the candi-
dates for receiving events.

e highPriorityGesture(_:including:) attaches a gesture to a view but raises its prior-
ity, meaning that it has a right of first refusal to any applicable events.

e simultaneousGesture(_:including:) attaches a gesture to a view, specifically
enabling it to handle events along with another gesture—for example,
magnify and rotate gestures might be paired to allow both actions at once.

There are also some modifiers that install common gestures automatically.
onTapGesture(count:perform:) installs a TapGesture at normal precedence that performs
the provided action after the requested number of taps is recognized. Similar
modifiers exist for other gestures.

Additionally, gestures can be made exclusive, setting an order of precedence
between two gestures; a long-press might take precedence over a tap. They
can also be sequenced, letting us require one gesture to complete before
another can be recognized: so that an item may be dragged, but only after a
long-press on the item in question—a ‘long press and drag’ similar to the
iPhone’s home screen.

Each of the initial three methods above takes an additional parameter,
including:. This is a GestureMask, which has several values: none, gesture, subviews,
and all. Passing none disables all gesture handling on this view, completely:
you might use it to conditionally make a button inactive, for example. The
gesture option specifies that only the gesture installed by this modifier should
be recognized, and all others should be ignored. Passing subviews does the
opposite: use it to disable just the gesture being passed, allowing any others
on subviews to continue functioning. Lastly, all implies both gesture and subviews,
and is the default behavior when no value is given.

This is all beginning to paint a picture. It seems quite possible that the gesture
used to trigger the list row and its associated navigation link is installed in
one of two ways: either as a high-priority gesture or with a gesture mask of
gesture, disabling any gestures attached to its content. Either of these would
cause the buttons in the rows to become ‘untouchable.’

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 2. Application Data in SwiftUl ® 32

It seems, then, that raising the priority of the button’s gesture might help
here. But how to do that? We can call the API directly while adding our own
gesture handler, like so:

Button(action: { « perform action » }) {
« define label »

}
.highPriorityGesture(
TapGesture(count: 1)
.onEnded { « perform action » }
)

That doesn’t look exactly graceful, though—the action is being defined twice,
and you can't easily predict which order they might be called in, if at all. There
should be a better way—and happily there is. Let’s take a look at how you
can begin to customize some of SwiftUI's components by looking at button
styles.

Button Styles

It just so happens that Button is one of the more customizable parts of the
SwiftUI toolkit. Every button looks for a style component in its environment,
which provides the details of the Ul surrounding the provided label view.
These styles are provided through the .buttonStyle() modifier, and several styles
are provided by the system, including DefaultButtonStyle, BorderlessButtonStyle, and
PlainButtonStyle. More useful, however, are the protocols these are based on,
and which enable you to create your own button styles.

SwiftUI provides two protocols for defining button styles: ButtonStyle and Primi-
tiveButtonStyle. Both require the definition of a makeBody(configuration:) method
which takes some configuration information and returns a view used to rep-
resent the button. For ButtonStyle, the configuration contains the Label view
passed to the button’s constructor along with a Bool value indicating whether
the button is currently ‘pressed.’ Using this type, you can define your own
style that changes based on whether the button is currently pressed—the
default style on iOS reduces the opacity a little, but you can ultimately do
anything here: change scale, color, and more. For the problem in hand, you
need to look at more than the appearance of the button, you need to define
its interaction. The comments on the ButtonStyle type point the way:

/// ‘Button' instances built using a ‘ButtonStyle' will use the standard
/// button interaction behavior (defined per-platform). To create a button
/// with custom interaction behavior, use ‘PrimitiveButtonStyle' instead.

Let’s follow this suggestion and look at PrimitiveButtonStyle and its associated
configuration type, PrimitiveButtonConfiguration. This type also has two properties,

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Handling User Input ¢ 33

the first of which is the Label view provided to the button. The second, this
time, is a function named trigger(); calling this will invoke the button’s action.
This, then, leaves your style in control of everything else: you determine the
appearance and how it changes, how the interaction will work, and when the
action will fire. This is the power tool for the job: if you own the gesture pro-
cessing, then you can give it a high priority.

Raising Button Priority

In Xcode’s project navigator, create a new group named Accessories, and within
that create a new Swift View file named HighPriorityButtonStyle and open it. Remove
the contents of the HighPriorityButtonStyle type definition and replace View with
PrimitiveButtonStyle in its declaration:

2-ApplicationData/final/Do It/Accessories/HighPriorityButtonStyle.swift
struct HighPriorityButtonStyle: PrimitiveButtonStyle {
}

For now, replace the contents of the previews() property in the HighPriorityButton-
Style_Previews type with an EmptyView as well:

struct HighPriorityButtonStyle_Previews: PreviewProvider {
static var previews: some View {
EmptyView()
}
}

To provide a style for the button, you need to implement the makeBody(configu-
ration:) function to return some View type. Since you're managing the press
state of the button, it’s best to create a custom view just for this. Add the
following private view type inside the HighPriorityButtonStyle type definition:

2-ApplicationData/final/Do It/Accessories/HighPriorityButtonStyle.swift
private struct Inner: View {

@State var pressed = false

let configuration: PrimitiveButtonStyle.Configuration

var body: some View {
VIR S 4

}
}

Here the view has a property used to record the press state of the button,
and it also holds a copy of the configuration passed into the button style, so
that it has access to both the label and trigger(). The magic is going to happen
inside this view’s body implementation, where you'll create a gesture and install
it onto the label using the .highPriorityGesture() modifier.

http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Accessories/HighPriorityButtonStyle.swift
http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Accessories/HighPriorityButtonStyle.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 2. Application Data in SwiftUl * 34

The standard button gesture is not available, as it’s a private API (though if
you're daring, try typing _ButtonGesture in Xcode and see what the autocomple-
tion brings up...). Instead, let’s approximate it with a DragGesture. Drag gestures
have one main property, which is the minimum distance required before the
gesture is recognized. In this case, that distance will be zero, so the gesture
is recognized as soon as the button is touched. To approximate some of the
button gesture’s behavior, you'll disable the ‘pressed’ state if the touch is
dragged more than a little distance away from its starting point. The transla-
tion(_:doesNotExceed:) method in Helpers/Geometry.swift will do this for you. Go to the
body property of HighPriorityButton.Inner and create the drag gesture:

2-ApplicationData/final/Do It/Accessories/HighPriorityButtonStyle.swift
let gesture = DragGesture(minimumDistance: 0)
.map { translation($0.translation, doesNotExceed: 15) }

Here you've created a new DragGesture with a minimum drag distance of zero.
You're then mapping its Value type into something new, using the .map(_:).
DragGesture.Value is a fairly large type, containing the start time and the starting
and current locations for the drag, along with various computed properties
for things like the distance moved (translation) and the predicted ending
location and ending translation for the drag (to implement e.g., a ‘fling’ gesture
where an item keeps moving after the drag ends, based on its momentum).
For this button, only the touch translation is useful—you want to see if it’s
moved a small or large distance since it started, and adjust the pressed state
property accordingly. The map function uses translation(_:doesNotExceed:) to turn
the drag’s translation into a Bool value.

Next, you want to update the state when the gesture’s value changes. This is
done with the .onChanged(_:) modifier:

2-ApplicationData/final/Do It/Accessories/HighPriorityButtonStyle.swift
.onChanged { self.pressed = $0 }

This is simple enough: if the mapped value is true, the button is pressed,
otherwise it’s not. Now you need only respond to the end of the gesture, when
the user’s finger is lifted from the screen, which is done via the .onEnded(_:)
modifier:

2-ApplicationData/final/Do It/Accessories/HighPriorityButtonStyle.swift
.onEnded { _ in
guard self.pressed else { return }
self.pressed = false
self.configuration.trigger()

http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Accessories/HighPriorityButtonStyle.swift
http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Accessories/HighPriorityButtonStyle.swift
http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Accessories/HighPriorityButtonStyle.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

YVvy

Handling User Input ¢ 35

First of all, you check whether the button is considered ‘pressed’ at the
moment. If not, you do nothing more. If it is, then you turn off the pressed state
and trigger the button’s action through the configuration.

Now all that remains is to implement the appearance. You’'ll use the provided
label as-is, but will drop the opacity while pressed, similar to a normal button.
Then the crucial part: install the drag gesture with a high priority using the
.highPriorityGesture(_:) modifier. Your complete body should now look like the fol-
lowing;:

2-ApplicationData/final/Do It/Accessories/HighPriorityButtonStyle.swift
let gesture = DragGesture(minimumDistance: 0)
.map { translation($0.translation, doesNotExceed: 15) }
.onChanged { self.pressed = $0 }
.onEnded { _in
guard self.pressed else { return }
self.pressed = false
self.configuration.trigger()

}

return configuration.label
.opacity(pressed ? 0.5 : 1.0)
.highPriorityGesture(gesture)

With the button view implemented, all that remains is to use it within the
HighPriorityButtonStyle itself, implementing makeBody(configuration:) like so:

2-ApplicationData/final/Do It/Accessories/HighPriorityButtonStyle.swift
func makeBody(configuration: Configuration) -> some View {
Inner(configuration: configuration)

}

Preview and Testing

Your code should now build successfully, but it’s worth testing its efficacy in
a preview. Use the following code in the HighPriorityButtonStyle_Previews type to
create a navigation view containing a list with a navigation link containing a
button, with the new button style set:

2-ApplicationData/final/Do It/Accessories/HighPriorityButtonStyle.swift
static var previews: some View {
NavigationView {
List {
NavigationLink(destination: Text("Hello")) {
Button(action: { print("hello") }) {
Text("Button!")
.foregroundColor(.accentColor)

}
.buttonStyle(HighPriorityButtonStyle())

http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Accessories/HighPriorityButtonStyle.swift
http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Accessories/HighPriorityButtonStyle.swift
http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Accessories/HighPriorityButtonStyle.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 2. Application Data in SwiftUl ® 36

}

Refresh the canvas and start a Live Preview. Tapping on an empty section of
the link row will highlight the row and trigger the link as usual, but tapping
on the button itself will not—the button should dim while touched and respond
to drags as you've designed. With this, you’ll have what you need to make
the completion button in TodoltemRow function property while in a list. Open
TodoltemRow.swift and add the following modifier to the completion button:

Button(action: { « ... » }) {
& ...»

}
.padding(.trailing, 6)
.buttonStyle(HighPriorityButtonStyle())
.alert(isPresented: $showAlert) {

S 4

}

Try the button within the todo list again—mow it behaves as required, and
you can tap it without activating the navigation link.

Nesting Data

In Model/Todoltem.swift, you’ll notice that the data model includes a second type,
the TodoltemList. This is what you’ll use to group sets of to-do items together
in lists. Each list has an associated color and icon, which will be used to
provide some visual differentiation to its contents. Regardless of their effect
on the appearance of the item lists, though, they need a representation of
their own. In this section, you'll create a view to display these lists and update
the TodoList view to operate upon the lists directly.

Start by creating a new SwiftUl View file inside the Views group, named
Home.swift. Ignoring the body for the moment, add a private struct type inside
Home named Row and conforming to the View protocol:

2-ApplicationData/final/Do It/Views/Home.swift
private struct Row: View {

var body: some View {
V2R

}
}

The row is going to display two things: the list’s icon and its title. The icon
will be displayed in white, using a circle in the list’s color as its background,
looking like this:

http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/Home.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

O ® N OO U A W N

o

Nesting Data ® 37

Shopping
Self-Improvement
@ Website/Promotion

RPGs

This will require three properties, so add them to the Row:

2-ApplicationData/final/Do It/Views/Home.swift
var name: String
var icon: String
var color: Color

With these in place, you can put together the view’s body. You'll need an HStack
containing an Image and a Text view. The image will use the icon name to locate
a system icon, namely a vector image from a special system font named SF
Symbols.” You'll then use several modifiers to give it the required appearance.
The title needs only a simple Text view.

Use the following code for the Row view’s body:

2-ApplicationData/final/Do It/Views/Home.swift
var body: some View {
HStack {

Image(systemName: icon)
.foregroundColor(.white)
.frame(width: 32, height: 32)
.background(color)
.clipShape(Circle())

Text(name)

}

On line 3, the system icon is obtained through the Image(systemName:) initializer.
It’s then given a white foreground color, and on line 5 it gets a fixed-size frame.

2. https://developer.apple.com/design/human-interface-guidelines/sf-symbols/overview/

http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/Home.swift
http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/Home.swift
https://developer.apple.com/design/human-interface-guidelines/sf-symbols/overview/
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 2. Application Data in SwiftUl * 38

This helps because the different icons have slightly different dimensions—sim-
ilar to letters in a variably-spaced font. Giving the image a fixed size with the
.frame() modifier ensures that every row will line up, regardless the intrinsic
sizes of the icons themselves. To obtain the circular background, first the
background(_:) modifier is used to provide a color fill, then the .clipShape(_:) modi-
fier, on line 7 is used to clip the content of the resulting view. Clipping means
that any pixels outside the provided shape are not drawn—so providing a
Circle clipping shape means that only the parts of the image and background
within the circle are drawn, leaving a circular colored background.

The row view is now complete: let’s put it to use. The list chooser itself will
use a List view to display the available options. Since it will be the new root
view for the application, this will be placed inside a NavigationView. There are
two types of lists you would like to show, as well: the individual lists, showing
only the items they contain, and the list of all items, regardless of their con-
tainer. That split lends itself to a grouped list with two sections: one for the
lists, one for “All Items.” The fonts used within the list can be a little different
as well, using a rounded appearance rather than the flat beveled edges of the
system font’s regular appearance.

Use the following code to lay the groundwork for the list:

2-ApplicationData/final/Do It/Views/Home.swift
NavigationView {
List {
V720 S
}
.font(.system(.headline, design: .rounded))
.listStyle(GroupedListStyle())
.navigationBarTitle("Lists")

}

The “All Items” section will appear at the top, so that’s the first section to add.
You create sections within List views using the Section view. This is passed a
ViewBuilder block that defines the contents of the section. Here you only have
a single row inside a navigation link, so the implementation is straightforward:

2-ApplicationData/final/Do It/Views/Home.swift
Section {
NavigationLink(destination: TodoList()) {
Row(name: "All Items",
icon: "list.bullet",
color: .gray)

http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/Home.swift
http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/Home.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Nesting Data ® 39

If you launch a live preview now and click on the row, then the familiar item
list will appear, although it will look a little strange, with a giant navigation
bar:

To-Do Iltems

Complete SwiftUl book sample
Use parts of the initial setup tutorial, to
demonstrate how | plan to introduce and
explain new code.

Feed the cat
Don't forget her medicine.

Buy food for Friday night

Send final draft to editor

This appears because the TodoList view still contains its own NavigationView; now
that there’s a new root view in the navigation hierarchy, that’s no longer
needed. However, thinking ahead a little, there’s more that needs to be
changed inside TodoList: at present, it shows all to-do items, while you now
want it to potentially show only the items within a certain list. That will need
to be fixed before you can proceed.

Open TodoList.swift, locate the body implementation, and remove the NavigationView,
leaving the List as the top-level view. At present, the list is iterating over
todoltems, the global collection of all to-do items, but that needs to change.
You'll potentially want to reference a single list, instead, and that means you'll
need a property to hold that list. Along with that, you can add computed
properties to return the view’s title—either that of the list or “All Items”—and
the items to display. Color-coding will depend on the type of content being

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

o U A w

Chapter 2. Application Data in SwiftUl ® 40

shown, as well. When showing a single list, only that list’s color will be used.
For “All Items,” however, each item should use the color of its associated list
(it's why the color is there, after all).

Add the following code above the body:

2-ApplicationData/final/Do It/Views/TodoList.swift

var list: TodoItemList? = nil

var items: [TodoItem] { list?.alllItems ?? defaultTodoItems }
var title: String { list?.name ?? "All Items" }

func color(for item: TodoItem) -> Color {
let list = self.list ?? item.list
return list.color.uiColor

Temporary Code
The methods used here are defined in Helpers/StaticListAPl.swift, and
o are only there to keep things simple for this chapter. In the next
chapter they will be replaced.

Here the list property holds either a list or nil. The items and title properties then
return the name or items from that list, and use the ?? operator to return the
appropriate all-items values when list is nil.

The color(for:) method will return a color to use for a given item row. If list is
non-nil, the list’s color will be used. Otherwise, the item will be asked for its
list, and that list’s color will be used instead.

To make use of these new properties, return to the body implementation and
change the List view declaration like so:
List(items) { item in

NavigationLink(destination: Text(item.title)) {

TodoItemRow(item: item)
.accentColor(self.color(for: item))

}

Here you've changed two things: on line 1 the List now iterates over the result
of the new items property; secondly, the associated list color is now being set
as the accent color for the item row on line 4. Recall that the completion
button in TodoltemRow has its foreground set to Color.accentColor—the .accentColor(_:)
modifier sets the value for that color on the item row view and everything
within it, meaning that the completion buttons will all take on the color of
their respective lists:

http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Nesting Data ® 41

09:41
{ Lists

To-Do Iltems

Complete SwiftUl book sample

@ Use parts of the initial setup tutorial, to
demonstrate how | plan to introduce and
explain new code.

O Feed the cat
Don't forget her medicine.

Buy food for Friday night

Send final draft to editor

The work on TodolList is now done, so return to Home.swift and add the second
section directly below the first:

2-ApplicationData/final/Do It/Views/Home.swift
Section {
ForEach(defaultTodoLists) { list in
NavigationLink(destination: TodoList(list: list)) {
Row(name: 1list.name,
icon: list.icon,
color: list.color.uiColor)

}

This looks almost the same as the section above it, with the exception of the
ForEach view iterating over the todoLists global variable. Within there, everything
is recognizable: the destination for the NavigationLink is the same TodoList view,
but this time it’s initialized with the list to display. The content for the link
is the same Row view as before, this time with the properties of the associated
list passed as parameters.

All that remains is to set this as the application’s root view. Open SceneDele-
gate.swift and replace TodoList() with Home() inside scene(_:willConnectTo:options:). Save,
build, and launch your application, and try it all out!

http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/Home.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 2. Application Data in SwiftUl ® 42

Lists

All ltems

Shopping

Self-lmprovement

@ Website/Promotion

RPGs

In particular, note that every row uses a rounded headline-sized font, thanks
to the .font(_:) modifier you attached to the List above. The selected font actually
applies to the entire view hierarchy rooted at that view.

Warnings and Glitches
It appears that SwiftUI is doing some things that UIKit doesn’t
like, probably by reaching in through internal APIs that those of
us on the outside can’t access. This results in a few warnings
appearing sometimes in the logs, but you can consider these
A benign.

Additionally, you might notice a stutter in the layout of the item
list after you navigate in. This is nothing you can affect, it seems,
and is simply a bug that will hopefully fall by the wayside.

Dynamically Ordering List Contents

The implementation of TodoList looks rather empty now, so let's make use of
all the extra room and investigate the ways you can sort the list’s contents.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Dynamically Ordering List Contents ® 43

Three methods of grouping currently present themselves: title, priority, and
urgency—the items’ due dates. You'll add a means to toggle this option, and
to do that you need to represent the option values somehow. An enum seems
like a good fit, so add this to TodoList.swift inside the definition of the TodoList

type:

2-ApplicationData/final/Do It/Views/TodoList.swift

private enum SortOption: String, Caselterable {
case title = "Title"
case priority = "Priority"
case dueDate = "Due Date"

}

You'll take advantage of the ability to assign string values to enumeration
cases to have each item’s rawValue be usable in the UI.

Add this state variable to the properties of your TodoList:

@State private var sortBy: SortOption = .title

Sorting the list is straightforward, as the Swift standard library provides all
the tools, and a simple static function in TodoList is enough to wrap the work:

2-ApplicationData/final/Do It/Views/TodoList.swift
private var sortedItems: [TodoItem] {
items.sorted {
switch sortBy {
case .title:
return $0.title
.caseInsensitiveCompare($1l.title) == .orderedAscending
case .priority:
return $0.priority > $l.priority
case .dueDate:
return ($0.date ?? .distantFuture) < ($1.date ?? .distantFuture)

}

Note that here you're sorting in ascending order of title or date, but
descending order of priority: higher priority and closer date are most impor-
tant.

Lastly, use your new sortedltems property as input to the List view inside the
body implementation:

List(sortedItems) { item in
<row content»

}

http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/TodoList.swift
http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 2. Application Data in SwiftUl ® 44

Refresh your canvas, and you’ll see that your to-do items are now sorted by
title in ascending order. Try changing the value of the sortBy property in your
code and refreshing the preview—does the ordering change correctly?

Changing Selections

The sort algorithm appears to be working, but your users can’t very well edit
the source code every time they want to change the sort order. Let’s give them
the means to change it via an action sheet, a small pop-up menu:

Sort by:

Title

Priority

Due Date

Action sheets and modal views in SwiftUI are implemented as view modifiers
and controlled via state variables and bindings. The basic flow is straightfor-
ward: add a boolean-typed state variable to control whether the sheet is shown
(true) or not (false); call the sheet(isPresented:content) or actionSheet(isPresented:content),
passing a binding to your state variable; set the value of the state variable to
show or hide the sheet.

All property attribute types act as a wrapper for their underlying value type. For a
wrapped property named foo, the compiler creates a concrete property of the wrapper
type named foo and a dynamic property of the underlying type called foo, which
simply asks _foo to supply the wrapped value. Additionally, each wrapper type can
provide an additional property named projectedValue which returns either the wrapped
type or another wrapper. The compiler creates a new dynamic property named $foo
which calls _foo.projectedValue.

SwiftUI makes use of the projected value facility to provide another wrapper type,
Binding, wrapping the same underlying storage as the State property. A binding, in
SwiftUI parlance, is “A value and the means to mutate it.” It references some piece
of state and allows other parts of your view hierarchy to observe and change that
value in a thread- and type-safe manner.

First, create your state variable. Name it showingChooser:

report erratum -« discuss

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Dynamically Ordering List Contents ® 45

2-ApplicationData/final/Do It/Views/TodoList.swift
@State private var showingChooser = false

Next, create your action sheet. Add a call to the .actionSheet(isPresented:content:)
method onto your List view, next to the calls to .navigationBarTitle() and .listStyle().
Bind it to your showingChooser property using the $-prefixed variable $showing-
Chooser:

2-ApplicationData/final/Do It/Views/TodoList.swift
.actionSheet(isPresented: $showingChooser) {
VRS S 4

}

The content block for the actionSheet(isPresented:content:) is expected to return an
instance of ActionSheet to present, and it will be invoked whenever your showing-
Chooser state property changes from false to true. You’ll need to provide a title
and a list of buttons to present. Let’s start with the title:

ActionSheet (
title: Text("Sort Order"),
buttons: <«..»

)

Since the sheet will display options derived from the list’s SortOption type, you
can easily determine the text for each button by mapping the enumeration’s
allCases to each item’s rawValue, similar to this:

SortOption.allCases.map { Text($0.rawValue) }

For an action sheet, you can map these to button definitions. Action sheet
buttons are all instances of Alert.Button, which provides factory functions to
create three types of button: default, cancel, and destructive. Destructive
buttons are highlighted to indicate that they will destroy some data (typically
they are colored red, though this changes in some locales), while a cancel
button is usually presented separately, and has a default title of “Cancel”
(appropriately localized for the user’s language and region). Any other type
of button is created with the default type, which is what you need here.

Action buttons need two things: a label, and an optional action block. For
each of your supported sorting options, you'll need to provide that option’s
rawValue as the button’s label, and its action should set the TodoList’s sortBy
property to the corresponding option. Using the map() approach, that leaves
the following implementation—place it in your .actionSheet() content block:

2-ApplicationData/final/Do It/Views/TodoList.swift
ActionSheet (

title: Text("Sort Order"),

buttons: SortOption.allCases.map { opt in

http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/TodoList.swift
http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/TodoList.swift
http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 2. Application Data in SwiftUl ® 46

ActionSheet.Button.default(Text(opt.rawValue)) {
self.sortBy = opt
}
1)

Your action sheet is now ready for prime-time, but so far, there’s no way for
the user to invoke it. Let’s use your new familiarity with buttons to create
one that will present the sheet. Regular buttons in SwiftUI (i.e., Button rather
than Alert.Button) are initialized with two parameters: an action block to be
invoked when the button is tapped, and a content block to define its content
(unlike alert buttons, you can use text, images, or both). To implement this
button, the action is simple: call self.showingChooser.toggle(), or explicitly set it to
true, if you prefer. For the content, let’s use a large symbol image with a bold
appearance. Add the following new property to TodoList:
2-ApplicationData/final/Do It/Views/TodoList.swift
private var sortButton: some View {
Button(action: { self.showingChooser.toggle() }) {
Image(systemName: "arrow.up.arrow.down.square")

.imageScale(.large)
.font(.system(size: 24, weight: .bold))

}

This button will fit nicely in the navigation bar, so add it to the (growing) list
of modifiers on the List view you're building in your body with the navigation-
Barltems() method:

2-ApplicationData/final/Do It/Views/TodoList.swift
.navigationBarItems(trailing: sortButton)

Testing the Code

The code is complete, so click Resume... on the canvas to see the button
presented at the top-right of the screen:

http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/TodoList.swift
http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Dynamically Ordering List Contents ® 47

All Items

Book flights and hotel room for Burning

@ Cat

Why haven't | done this already?

Buy food for Friday night

Choose cover image

Complete SwiftUl book sample

Use parts of the initial setup tutorial, to
demonstrate how | plan to introduce and explain
new code.

Now look to the lower right of the canvas, where the Live Preview button waits,
its image is a blue ‘Playback’ icon. Click that icon and wait a moment while
a simulator is launched inside the canvas. After a moment, the canvas will
re-draw, and any selection rectangles will disappear. Click on the sort button
to see the options pop up. Select each in turn (remember, it’s likely set to Title
already) and marvel. Not only does the list’s order change, but it animates.
SwiftUI provides a lot of useful features by default, and animation is just one
of them.

Runtime Warnings
As noted earlier, you’ll sometimes see warnings popping up in the
debugger output when you run a SwiftUI application. At this point
A you might see a message about an invalid auto-layout constraint;
consider it benign, since the application works, and you’ve written
no auto-layout code that would need revision.

You might wonder whether the rows should display the dates or priorities of
their items, and if so, you're right—they should. Right now, though, you have
a simple development interface here, providing enough to interact with, and
you’ll implement a more fully-featured Ul in Chapter 5, Custom Views and
Complex Interactions, on page 101.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 2. Application Data in SwiftUl ® 48

Crafting a Full-Screen View

Now that you have some List views and rows implemented, it’s time to think
bigger and look at how you can present all the information for a to-do item
in its own view.

Create a new SwiftUI View in the Views group and name it TodoltemDetail.swift. It
will need a Todoltem to operate on, so add a property for that, use it to supply
the item’s title to the Text view in the body, and update the TodoltemDetail() call in
the preview to pass in an item:

struct TodoItemDetail: View {
let item: TodoItem

var body: some View {
Text(item.title)
.font(.title)

}

struct TodoItemDetail Previews: PreviewProvider {
static var previews: some View {
TodoItemDetail(item: defaultTodoItems[0])
}
}

The detail view will present the item’s title in a header section, which will
make use of the to-do item’s color to make the view ‘pop.” Below that will be
the priority, due date, and any notes.

If you think this sounds like a job for a VStack, then you're right, so that’s
where you'll start. Wrap the existing Text view in a VStack, then put a new
Rectangle view above the title, setting its height and color:

VStack(alignment: .leading) {
Rectangle()
.fill(item.list.color.uiColor)
.frame(height: 210)
Text(item.title)
.font(.title)
}

.navigationBarTitle("", displayMode: .inline)

Note the call to .navigationBarTitle(_:displayMode:) at the end of the VStack. If this view
is displayed in a navigation view (and it will be), this call specifies the content
and format of the navigation bar. Duplicating the title seems a little redundant,
so an empty string will suffice, but the main reason this call is here is to
specify the display mode of .inline, which will give the usual semi-transparent
white bar across the top of the view, containing the back button. Without this

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Crafting a Full-Screen View ¢ 49

call, the bar would be transparent, and the title displayed in a large area
below (you can see the effect on the TodolList view). Once the rectangle is
extended to the top of the screen in the next section, however, any buttons
on the navigation bar would become either hard to see (against a blue back-
ground) or would clash horribly. Using the standard bar provides the best of
both worlds: it's white enough that the buttons look good and transparent
enough that the color underneath can bleed through and give it some charac-
ter.

Define a Layered Header View

This detail view doesn’t look very appealing right now; what would be really
nice is to have the title appear on top of the colored rectangle. SwiftUI provides
two tools which can do this: first, a ZStack view will place views one on top of
the other and supports both horizontal and vertical alignment types, along
with combinations of both. The second tool is an overlay view, created by
passing a view to the .overlay(_:) modifier method. An overlay view is placed
over the top of an existing view as in a ZStack, but is explicitly sized to match
the frame of the view below it.

In this case, a combination of the two will be useful, because there’s one
particular issue that can arise when placing text over a colored background:
contrast. Black text works well over a light-colored background, but not so
well on a darker or bolder color. Black on a mid-blue is readable, but not
appealing. White text on a pale yellow is hard to read. There are ways around
this. For example, you can look at the hue, saturation, and brightness of the
underlying color and pick black or white text based on that, but this can be
error-prone.

Instead, let’s take a Gordian-knot approach and cut through the problem
with a simple solution. You’ll always darken the color underneath the text,
then use white text. A gradient from a slightly-transparent black to fully
transparent laid over the bottom part of the colored rectangle will darken the
area containing text enough that you have a pleasant contrast, while still
allowing the user’s choice of color to shine through unchanged toward the
top of the rectangle.

First, let’'s create the overlay view. This will contain the text of the title and a
gradient providing the darker background that will give more contrast for the
text above it.

In TodoltemDetail.swift, at the bottom of the TodoltemDetail definition, add a new
sub-type named TitleOverlay:

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

O 00 N O 1 »h W N

Chapter 2. Application Data in SwiftUl ® 50

2-ApplicationData/final/Do It/Views/TodoltemDetail.swift
private struct TitleOverlay: View {
let item: TodoItem

}
Next, define the overlay’s gradient through a dynamic property:

2-ApplicationData/final/Do It/Views/TodoltemDetail.swift
var gradient: LinearGradient {
LinearGradient(
gradient: Gradient(colors: [
Color.black.opacity(0.6),
Color.black.opacity(0),

1,

startPoint: .bottom,

endPoint: .init(x: 0.5, y: 0.1))
}

The linear gradient type takes a single Gradient, defined on line 3, and a start
and end point which define where within the view the color should begin to
change. This gradient fades between two colors: a slightly transparent black
to a completely transparent one. The start point on line 7 states that the
gradient should begin at the bottom of the view, while line 8 states that it
should end close to the top of the view (in SwiftUI, the y-coordinate grows
downwards, meaning 0.0 is at the top of the view).

A common concept in drawing APIs is that of a unit point, namely a value between
zero and one that is used to define a position within some other area: the unit value
is multiplied by the size of the appropriate axis within the target area to get a real
location. Gradients use these extensively, and SwiftUI includes the UnitPoint type to
aid in their use.

Conceptually, a unit point in a 2D coordinate system is a point with x and y coordi-
nates, each between zero and one. A gradient is defined as a series of colors which
will be interpolated with one another to create a smooth change across some region,
like the content bounds of a view. When the gradient is created with some number
of colors, a unit point is used to define the location at which it will place each of its
constituent colors. To fade between two colors from top to bottom of an entire view,
you would use y coordinate values of zero and one, respectively. To fade from the left
to the right, use x coordinates of zero and one. To fade from top-left to bottom-right,
both x and y values would use zero and one. The UnitPoint type includes several pre-
defined values for the most commonly-used locations, including the leading and
trailing edges, top and bottom, corners, and center.

When you only want to make use of a single dimension, as in TitleOverlay, you simply
provide the same value in all points. The standard convention, however, is to use 0.5
for values on an unused axis. All of the built-in unit points provided by SwiftUI follow

report erratum -« discuss

http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/TodoItemDetail.swift
http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/TodoItemDetail.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Crafting a Full-Screen View ® 51

this scheme, so you’ll need to be aware of this if you want to pair a custom point with
.bottom, as in the gradient on page 50.

Assemble the Overlay Layer

With these parts in place, you can start on the body implementation. To place
the text on top of a rectangle containing the gradient, use a VStack with an
alignment of .bottomLeading, so that the content is laid out from the lower-
leading corner of the header view:

2-ApplicationData/final/Do It/Views/TodoltemDetail.swift
var body: some View {
ZStack(alignment: .bottomLeading) {
Rectangle().fill(gradient)
VI S

}

Note that in this view, you don’t need to specify any frame sizes; since it's
used as an overlay for another view, its size will be defined by that other view.

To see this view on the canvas, you need to add it to the body of the
TodoltemDetail view. At the same time, let’s display any notes in the to-do item.
Add a call to .overlay(TitleOverlay(item: item)) to the existing Rectangle view, and
replace the title with a Text view containing the item’s notes field, if it’s non-
nil, with a little horizontal padding. Lastly, place a Spacer view at the end to
push the header to the top of the screen. Your body implementation should
look something like this:

2-ApplicationData/final/Do It/Views/TodoltemDetail.swift
VStack(alignment: .leading) {

Rectangle()
.fill(item.list.color.uiColor)
.edgesIgnoringSafeArea(.top)
.frame(height: 210)
.overlay(TitleOverlay(item: item))

if item.notes != nil {
Text(item.notes!)
.padding(.horizontal)
b

Spacer()
}

.navigationBarTitle("", displayMode: .inline)

report erratum -« discuss

http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/TodoItemDetail.swift
http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/TodoItemDetail.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 2. Application Data in SwiftUl ® 52

Press the Resume button in the canvas, and you’ll see the color rectangle
taking up the top part of the device’s screen, complete with a smooth gradient
darkening it toward the bottom. This could look nicer, though—if you're
looking at an iPhone X, XS, XR, or iPhone 11 in your canvas (this can be
changed by selecting a different simulator device in Xcode’s scheme switcher),
then you’ll notice a white strip across the top of the screen above the header.
That real-estate could be a lot more use to us as part of the header, so append
a call to .edgeslgnoringSafeArea(.top) to the Rectangle in TodoltemDetail’s body implemen-
tation, between the fill() and .frame() modifiers. The item’s color now swoops
upward to fill in the status bar area, giving the view a much more appealing
aspect.

Returning to the TitleOverlay view, you can now begin to add the content. Fol-
lowing the Rectangle containing the gradient, add a new VStack with leading
alignment and a spacing of eight points, and place the item’s title in here
using a Text view with a bold title font. Your code should look like this:
2-ApplicationData/final/Do It/Views/TodoltemDetail.swift

VStack(alignment: .leading, spacing: 8) {
Text(item.title)

.font(.title)
.bold()
VIS S
}
.foregroundColor(.white)
.padding()

Your text should appear in large white letters over the darkened part of the
item header. Next, let’s add the priority and due date, if any. Start out by
appending a HStack after the title:

2-ApplicationData/final/Do It/Views/TodoltemDetail.swift
HStack(alignment: .firstTextBaseline) {
V72

}
.font(.subheadline)

All the text in this stack is going to use the same font, so that font is set on
the HStack itself—this will cascade that setting to any descendant views.

Show Item Priority

For the priority, simply including the name isn’t necessarily very descriptive.
While “Urgent,” in English at least, sounds like a call to action and can be
quickly interpreted as “this is an urgent to-do item,” the same can’t be said
for “low,” “high,” or “normal.” “This item is low” doesn’t necessarily suggest

http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/TodoItemDetail.swift
http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/TodoItemDetail.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Crafting a Full-Screen View ¢ 53

a priority in the way “this item is urgent” does—and that’s only in English.
When your application is localized, there may be yet more ways that a single-
word priority indicator can appear detached or even nonsensical.

For that reason, you're going to use a formatted string of “Priority: X,” where
“X” will be replaced with the priority name, and will additionally be rendered
with bold text to indicate that this is the part of the sentence containing
actionable information. Looking at the initializers for Text views, though, it
doesn’t seem like there’s an obvious way to specify different fonts, colors, or
any other attributes for parts of the text. The NSAttributedString type—the typical
way to supply text with formatting information in UIKit—isn't mentioned
anywhere in SwiftUI's API, in fact.

Happily, all is not lost. Text happens to implement a very Swift-y way of
achieving exactly what you need:

extension Text {
public static func + (lhs: Text, rhs: Text) -> Text

}

You can, in fact, take two separate Text instances, each with modifiers affecting
their content and presentation, and add them together, resulting in a single
text view with all that presentation information retained. Here, then, you can
easily combine a plain “Priority:” label with a bolded label containing the
priority’s name (suitably capitalized), in one line of code:

2-ApplicationData/final/Do It/Views/TodoltemDetail.swift
Text("Priority: ") + Text(item.priority.rawValue.capitalized).bold()

Your canvas now displays exactly what you defined, and not a mention of
NSAttributedString.attributes(at:effectiveRange:).

There’s plenty of horizontal space left over, so let’s put the due date on the
trailing edge of the view. First, add a Spacer view, then add a Text view containing
either the due date (suitably formatted) or a static message if there is no date
attached:

2-ApplicationData/final/Do It/Views/TodoltemDetail.swift

Spacer()
if item.date != nil {
Text("|(item.date!, formatter: Formatters.mediumDate)")
}
else {

Text("No Due Date")
}

http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/TodoItemDetail.swift
http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/TodoItemDetail.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 2. Application Data in SwiftUl ® 54

Note that the date string uses a form of string interpolation that makes use
of an optional Formatter; this uses the static formatter property you created ear-
lier, which the string interpolation engine uses to convert the provided value
(a Date in this instance) into a String, ready for display.

Now, your item should be displayed on the canvas with a vibrant color-filled
header view drawing attention to the primary attributes of the item, with any
additional notes showing below. All that remains is to tie it into the rest of
the application.

Open TodoList.swift and find the NavigationLink in the view’s body implementation.
Replace the link’s destination with a TodoltemDetail like so:

2-ApplicationData/final/Do It/Views/TodoList.swift
NavigationLink(destination: TodoItemDetail(item: item)) {
TodoItemRow(item: item)
.accentColor(self.color(for: item))

}

Start a live preview, or launch the application in the simulator or on a device,
and navigate into a to-do item to see your new view in action:

< To-Do Items

Complete SwiftUl book

sample
Priority: High Aug 3, 2019

Use parts of the initial setup tutorial, to
demonstrate how | plan to introduce and explain
new code.

What You Learned

This chapter has covered a lot of ground, but now you ought to have a number
of useful tools on your belt:

* You can drive view content updates via state properties.

* You've seen how you can create interesting and inventive interfaces by
composing several views together.

* You're able to make use of the gesture system to implement your own
input controls.

http://media.pragprog.com/titles/jdswiftui/code/2-ApplicationData/final/Do It/Views/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

What You Learned ® 55

e Management of deeper navigation hierarchies is now a straightforward
task.

¢ Rich-text labels are within your grasp.

* You took your first steps into the realm of styles and modifiers in SwiftUI.

e Stack views are clearly the power tools of SwiftUI.

Next, you'll investigate the facilities provided for working with mutable data,
and how to implement editing functionality in your SwiftUI application.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

CHAPTER 3

Modifying Application Data

Story Map

Why do I want to read this?
User interaction is the crux of your application. Attractively presenting
data is all very well, but your users will expect to be able to add, modify,
and remove such data.

What will I learn?
You'll be introduced to the SwiftUI @Environment type and learn how to
make use of standard edit-mode affordances. You'll see how to add
interactive controls to your app and how to respond to user input.

What will I be able to do that I couldn’t do before?
You now understand how SwiftUI's control system works for user input
of various types and can safely share data and state information amongst
your views.

Where are we going next, and how does this fit in?
Next, you're going to take what you've learned about state and controls
and make your list view more flexible.

In this book so far you've used SwiftUI to present data, arranging it in an
aesthetically pleasing manner. A real application does more than just display
static data, though: it allows the user to interact and modify that data. Really
good applications alert the user to changes through the use of animations
that draw attention in the right direction without interrupting the application’s
flow and its primary purpose.

In this chapter, you’ll begin to wire your data model into SwiftUI properly,
providing edit controls where necessary, and reacting to changes in the data
model cleanly when they happen. SwiftUI's state management tools make

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 3. Modifying Application Data ® 58

these tasks simple to approach for the majority of cases while stepping out
of the way when you need to take more fine-grained control of the process.

To follow along, download this book’s source code bundle' and use the starter
project found in code/3-ModifyingData/starter. An example of the complete result
of this chapter’s work can be found in code/3-ModifyingData/final.

Data Flow in SwiftUI

One of SwiftUI's strengths is its focus on state management. It provides types
and property wrappers that work hand-in-hand with its layout and rendering
system to ensure that any modifications to your application’s state are cor-
rectly reflected in your view hierarchy. It also makes use of its central position
in the procedure to ensure that only the requisite parts of the interface are
updated: it is able to use its knowledge of state to determine that some sub-
views haven’t changed without necessarily diving through the full hierarchy,
comparing view contents one by one.

Property Wrappers

Swift has a few special keywords or attributes that can be applied to properties to
induce certain behavior. For example, the lazy keyword causes a property to be initial-
ized lazily—i.e. only when first requested. The @NSCopying attribute for properties of
an Objective-C type will cause that type to be copied rather than retained during
assignment to the property.

Swift 5.1’s property wrappers allow programmers to create their own attributes via
use of the @propertyWrapper attribute on a type along with some special properties.
When these attributes are used, the compiler synthesizes several stored and computed
properties implementing the API you’ll use in your appliation.

When you declare a property using a property wrapper attribute named myProperty,
the compiler creates a property of the property wrapper’s type and names it _myProperty.
It then creates a second, computed, property named myProperty whose value is fetched
from within the wrapper. Further, if the wrapper offers a special projected value, the
compiler generates a computed property named $myProperty which fetches the project
value from the wrapper. The SwiftUI @State property wrapper uses this to produce a
binding to its value.

State in a SwiftUI app is managed with several different tools, each with a
particular purpose. There are types used to manage discrete state for one or
more views, and there are ways to directly share state downwards toward
child views or to pass state changes upwards to ancestor views. There are

1. https://pragprog.com/titles/jdswiftui/source_code

https://pragprog.com/titles/jdswiftui/source_code
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Data Flow in SwiftUl ¢ 59

also ways to indirectly pass data up and down the view stack, making it
available to any descendants or any ancestors that may be interested—without
tying the two together directly.

State Management

State data in SwiftUI is managed by the framework. You mark certain items
as state by using property wrappers, and SwiftUI then observes when these
are accessed and modified. When a view’s body implementation accesses state,
this is noted by the framework. Then, when a state value is modified, any
views that accessed it are recreated through their body property, after which
SwiftUI will determine what in the view hierarchy actually changed and will
merge those changes (and only those changes) into the on-screen interface.

There are two property wrapper types that you use for this:

@State

Mark a structure-type property with the @State attribute, and SwiftUI will keep
track of it, using any changes to that value to trigger updates of the view
hierarchy. This type is logically for mutable data; you can use a class type,
but mutating the contents of an object instance won’t trigger anything—only
directly assigning a new (object) value will cause any change. Structure types,
on the other hand, fit perfectly into @State properties, since any change to the
contents is a change to the whole structure, triggering an update.

@ObservedObject

For class types, the @ObservedObject attribute is the tool of choice. It works
specifically with objects that implement the ObservableObject protocol from the
Combine framework. Once you have a class that conforms to this protocol,
Combine’s @Published property attribute will cause any changes to the tagged
attribute to be published by the containing object. SwiftUI then uses this to
observe changes to the content of an object (reference) type, obtaining the
same behavior that @State properties provide for struct types.

From the point of view of the SwiftUI framework, these types both serve the
same purpose: they allow the framework to react to changes of state. Addi-
tionally, they provide a second function: they can automatically provide
bindings to themselves and their content.

Bindings are conceptually references to the @State or @ObservedObject properties,
or to their contents; they read their values from the original object, and any
changes made to them are written back to the original object. Here, the state
properties are considered the source of truth for a given value, while a binding

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 3. Modifying Application Data ® 60

is merely a reference back to that source of truth. The idea is that your
application should have one source of truth for a particular piece of its state—it
should live in one place exactly—while anywhere else that wishes to access
it will instead bind to that value remotely.

When defining the properties of a view, you use the @Binding attribute to declare
that your property should be a binding to some other state. When you need
to create a binding, you can obtain one by using the $ prefix on a state prop-
erty, which will return a binding to itself. To get a binding to some property
within a state type, you prefix the entire expression with the $ prefix, and
you’ll ultimately receive a binding to the final item in the property chain:

@State var myState: SomeData

var body: some View {
SomeView($myState.user.name) // receives a binding to the 'name' property

}

Dependency Propagation

Bindings are one of the principal tools provided for dependency propagation
in SwiftUI. Dependency propagation refers to the way in which state data is
made available to different parts of your application, from a single source of
truth to various other views. You can thus link together your views in a
dependency chain—one view depending on state from another—in several
different ways.

In UIKit or AppKit applications, you're generally left to handle this task on
your own by copying values or references around the view hierarchy, then
manually notifying controllers and views when the data changes. SwiftUI sets
out to handle as much of this task as possible on your behalf, distilling
dependency propagation into four distinct types of direct and indirect linkage
both up and down the view hierarchy:

Direct, downwards

Regular Swift properties will pass an item as a parameter when creating a
subview to make that data available directly. Text views function this way, for
example; you pass them a plain String.

[pats H——] copyr H—t+[copyz H—

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Data Flow in SwiftUl ® 61

Direct, upwards

For upward state movement, the Binding type is preferred. You pass a binding
to a @State or @ObservedObject property into a subview to allow that subview to
both see and modify your state. Most controls use this to bind them to some
data owned or observed by the ancestor that created them.

@State | V!"_@éi_ﬁai_ﬁé_"i

“Value” | __Value”
[

—

> “New Value” |

@State | | @Binding |

"1 “New Value”

“New Value” |

Indirect, downwards

For passing values down the view hierarchy in general, SwiftUI provides the
Environment. Two property wrappers, @Environment and @EnvironmentObject
(equivalent to @State and @0ObservedObject respectively), allow child views to pluck
from the environment that were placed there when some ancestor view was
created. Many view modifiers use the environment behind the scenes; this is
how setting a foreground color on a top-level view takes effect on its descen-
dants.

Environment

| Value | | Value Value
A %

.environmentObject()

\‘ I - oy

!) H 1
§ @EnvironmentObject i i @EnvironmentObject |
H H »l | H
L i H

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 3. Modifying Application Data ® 62

Indirect, upwards

Here, you'll find one of the lesser-known power tools of SwiftUI: the PreferenceKey
protocol. This allows you to define a type that carries some data value along
with the knowledge of how to reduce multiple values down to a single one.
Any descendant view can associate a value with a particular Preferencekey type,
and its ancestor can request that value via the .onPreferenceChanged() view
modifier. The values from all subviews are reduced to a single value that is
provided to the ancestor. This way, a subview can potentially alter many
things about a parent view—a settings editor might change the background
color of an application’s root view, changing the values used in the body
property of the root view.

Preferences

|

.onPreferenceChange (MyKey.self) { ... } .preference(MyKey.self, value)

Application Data in “Do It”

The application you're building involves a few items of data, which at present
are being loaded from a built-in JSON file. While that may be a useful way
to present some initial sample content to the user, real data generally lives
elsewhere and is updated by the application in response to user input. As a
precursor to building out editing support, you'll look at the final storage of
your data and how it is passed down through your application’s view hierar-
chy.

In the starter project look at Model/DataCenter.swift; this component is going to
become more important as you work through this book, and you’ll make use
of more of its API as you continue. This defines the data source where your
data will live—your application’s source of truth. It implements the shared
storage for all the lists and items you’ll be using, along with automatic save
and load functionality, and more. Most of its implementation is outside the
bounds of a book focussed purely on SwiftUI, but there are a few lines are
worth pointing out:

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

O 0 N O 1 h W N

Using the Environment ® 63

3-ModifyingData/final/Do It/Model/DataCenter.swift
import Foundation

import Combine

import SwiftUI

final class DataCenter: ObservableObject {
@Published var todoItems: [TodoItem] = []
@Published var todoLists: [TodoItemList] = []
@Published var defaultListID: UUID

}

On line 2, you’ll notice a new module being imported, named Combine. This
framework, introduced by Apple alongside SwiftUI, underlies a lot of SwiftUI's
reactive workflow. It implements a publisher-subscriber model of data flow
along with a variety of tools used to transform and validate different types of
data automatically. It’s being imported here to tie in with SwiftUI's @Observe-
dObject attribute, which explicitly uses Combine’s ObservableObject protocol. You'll
note that DataCenter specifies conformance to that type.

Observable objects are those that publish information on their changes to
subscribers, such as SwiftUI. While it’s possible to implement the necessary
protocol conformances manually, the simplest way to get what you need is
to mark properties you wish to publish with the @Published attribute, as on
line 6. This property wrapper from Combine will do everything for you so that
when the property is modified (as it’s a value type, that includes modification
of its contents), all subscribers will be notified. SwiftUI will learn about
changes by subscribing, which will happen automatically via the @ObservedObject
property wrapper.

Using the Environment

Now that your data is contained and managed by an instance of the DataCenter
class, you’ll have to feed that instance into your application’s view hierarchy.
The simplest approach is to have your root view declare and initialize a
property using the @ObservedObject attribute to hold it, like so:

@0ObservedObject private var data = DataCenter()

That, however, presupposes that the chosen view will always be at the root
of the application and that it will always pass bindings down to its children.
At present, this might seem reasonable enough—your view hierarchy isn’t
terribly deep at present—but as your application grows, manually passing
bindings around will start to become rather cumbersome. Instead, you'll use
the @EnvironmentObject attribute and the .environmentObject() modifier to make it
available as part of your views’ environment, available to any descendants.

http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Model/DataCenter.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

>

Chapter 3. Modifying Application Data ® 64

To install it, open SceneDelegate.swift and modify the content of scene(_:willConnect-
To:options:) as follows:

3-ModifyingData/final/Do It/SceneDelegate.swift
let contentView = Home()
.environmentObject(DataCenter())

Here, you've initialized a DataCenter instance for the scene and attached it to
the environment for the root view at the same place you define that root view.
Should you ever swap out the Home view for a different type, the data will still
be attached to the new view in the same manner.

With the data now living in a new location, your views will need to be updated
to correctly bind to the items managed by the DataCenter.

Start by opening Views/Home.swift. Here you need to add a DataCenter property
with the @EnvironmentObject attribute, and then you’ll need to change the the
ForEach view initializer to use the todoLists property of that DataCenter. Lastly, you
need to add a call to .environmentObject() in the preview provider at the bottom
of the file, so that the data is available in previews as well as the real applica-
tion.

Make the following updates to the file:

3-ModifyingData/final/Do It/Views/Home.swift
struct Home: View {
@EnvironmentObject private var data: DataCenter

var body: some View {
NavigationView {

List {
Section {
// « all items »
}
}
}
// < view modifiers »
}
}
// « struct Row: View { ... } »

}

struct Home_Previews: PreviewProvider {
static var previews: some View {
Home ()
.environmentObject (DataCenter())

http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/SceneDelegate.swift
http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Views/Home.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

YYVYY \

\

Using the Environment ® 65

Next open TodoList.swift. The changes here will be confined to three places: the
items property will be rewritten to use the new DataCenter instance fetched from
the environment; the environment object will be attached to the for the
TodoltemDetail view; and the color(for:) method will use the data center to find the
list associated with an item. The required changes are minimal:

3-ModifyingData/final/Do It/Views/TodoList.swift
@EnvironmentObject private var data: DataCenter

var list: TodoItemList? = nil

var items: [TodoItem] {
guard let list = list else { return data.todoItems }
return data.items(in: list)

}

var title: String { list?.name ?? "All Items" }

func color(for item: TodoItem) -> Color {
let list = self.list ?? data.list(for: item)
return list.color.uiColor

}
VI 4

var body: some View {
List(sortedItems) { item in
NavigationLink(destination: TodoItemDetail(item: item)
.environmentObject(self.data)

) {
// & TodoItemRow(...) »

}
}

// & modifiers »

}

Note that the code for creating the list content views hasn’t changed, and
doesn’t need to; the TodoltemRow doesn’t need to bind to the contents of the to-
do list, as it is just reading from its contents. A copy of the value will sulffice,
and the potential dependency problems are nicely sidestepped. The call to
.environmentObject() inside the NavigationLink is important though: the new view
pushed onto the navigation stack won’'t automatically inherit the DataCenter,
and the TodoltemDetail view will need to use it to access the list color for its
Todoltem.

Don't forget to attach a DataCenter to the environment in the preview provider:

3-ModifyingData/final/Do It/Views/TodoList.swift
struct TodoList_Previews: PreviewProvider {
static var previews: some View {
NavigationView {
TodoList()
}

http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Views/TodoList.swift
http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Views/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

Chapter 3. Modifying Application Data ® 66

.environmentObject(DataCenter())

}

Lastly, open TodoltemDetail swift and make the following changes to fix the errors
noted by Xcode:

struct TodoItemDetail: View {
let item: TodoItem
@EnvironmentObject private var data: DataCenter

var body: some View {
VStack(alignment: .leading) {
Rectangle()
.fill(data.list(for: item).color.uiColor)
// « modifiers »

// « notes »
}

.navigationBarTitle("", displayMode: .inline)

}

// « private struct TitleOverlay: View { ... } »
}

Once again, don’t forget to add an .environmentObject(DataCenter()) modifier inside
the preview provider.

Building an Editor

Your next task is to implement an editor for your to-do items. This involves
a few extra types added as part of this chapter’s starter project, all of which
reside under the Helpers group.

Create a new SwiftUI View file in the Views group and name it TodoltemEditor.swift.
Edit the view and the preview provider to match the following example:

3-ModifyingData/final/Do It/Views/TodoltemEditor.swift

struct TodoItemEditor: View {
@Binding var item: TodoItem
@EnvironmentObject private var data: DataCenter
@State private var showTime: Bool

init(item: Binding<TodoItem>) {
self. item = item
self. showTime = State(wrappedValue: false)

if let date = item.date.wrappedValue {
let components = Calendar.current.dateComponents (
[.hour, .minute], from: date)
self.showTime = components.hour! != 0 || components.minute != 0

http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Views/TodoItemEditor.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

20

25

30

}

Building an Editor ® 67

}

var notesEditor: some View {
TextView(text: self.$item.definiteNotes)
.padding(.horizontal)
.navigationBarTitle("Notes: | (item.title)")

}

var body: some View {
Form {
// « form contents will go here »
}
.navigationBarTitle(Text("Editing: | (item.title)"),
displayMode: .inline)

- struct TodoItemEditor_Previews: PreviewProvider {

35

40

-}

static var previews: some View {
NavigationView {
StatefulPreviewWrapper(defaultTodoItems[0]) {
TodoItemEditor(item: $0)
}
}

.environmentObject (DataCenter())

Two items here deserve special attention:

* Your first @Binding property appears on line 2. An editor logically operates

on data owned by someone else—it provides a service. You model this by
using a binding, as discussed in Dependency Propagation, on page 60.
This allows the editor to view the current value and also to modify them,
triggering changes to the underlying @State or @ObservedObject property that

owns the value.

It turns out that previews and @Binding types don’t mix terribly well. You
might normally pass in a constant binding via Binding.constant(), but that
isn’t useful in an editor: all changes are ignored. Declaring a real @State
property is fine, but sadly fetching a binding from that outside of a View.body
call isn’t allowed—and SwiftUI doesn’t consider PreviewProvider.previews a
body method—so you can’t define mutable preview state within the preview
provider itself. The StatefulPreviewWrapper referenced on line 35 provides a
concise workaround for this issue by accepting a value in its initializer
that it stores as a @State property, then provides a binding to that state
as input to the provided ViewBuilder block, allowing the preview to pass it

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 3. Modifying Application Data ® 68

on. You can see find the implementation in Preview Assistants/StatefulPreviewWrap-
per.swift.

The view’s body contains a Form view. This container view is available on all
platforms, and it behaves in the appropriate manner for each. On macOS,
for example, it acts more or less like a VStack, laying its contents out in a reg-
ular view. On iOS, it will instead use the appearance of a List with a grouped
style. Furthermore, it alters the default appearance of certain control types,
assuming the use of a navigation view to push a new view containing menus
of items to choose, for example. Overall, it aims to mirror the appearance of
the Preferences application, so look at that to get an idea of what you'll see.

The first thing to include in the form is the to-do item’s title. For this, you'll
use a TextField view, which takes a label string (amongst other things, labels
serve as accessibility aids) and a binding to the value to display and edit. The
title is straightforward—"Title" will suffice—and the binding is generated using
the $-prefix operator on this view’s item property:

3-ModifyingData/final/Do It/Views/TodoltemEditor.swift
TextField("Title", text: $item.title)

Choosing Values

Next let’s provide a way to select the list to which the item will belong. For
this you’ll use a Picker control, which also takes a label string and a binding
to the underlying value. This differs, however, in how you provide its content.
Where a Textfield is representing some straightforward data, a picker might
display any number of options representing all sorts of things, so the picker
uses a @ViewBuilder block to build its content. This picker will contain one entry
for each defined TodoltemList, so to provide that you'll use a ForEach view iterating
over the contents of the todoLists property of the DataCenter, providing a Text view
displaying each list’s name.

The picker’s value itself will be bound to the listID property of the view’s bound
item. This presents an interesting situation: the picker is displaying Text views,
each generated from a TodoltemList, but each option needs to assign a related
Int value to the picker’'s bound property. How can SwiftUI map from a
TodoltemList to an Int here?

The answer lies in the specifics of the ForEach view, or, more specifically, its
output. The ViewBuilder block passed to the ForEach is invoked once for each
value in the provided collection, and the resulting view is then tagged with
that value in SwiftUI's internal data store. The associated value is then used
by the picker to set the value of its binding. “That’s all well and good,” you

http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Views/TodoItemEditor.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Building an Editor ® 69

may think, “but the value doesn’t match the type of the binding I'm using,”
which is true. In this case, you can override the tagged value using the .tag(_:)
modifier, in essence supplying the value that the Picker will assign to its
binding. Here the value you need is each list’s id value.

The resulting code is short and sweet, belying the complexity underneath (a
common occurrence in SwiftUI):

3-ModifyingData/final/Do It/Views/TodoltemEditor.swift
Picker("List", selection: $item.listID) {
ForEach(data.todoLists) { list in
Text(list.name).tag(list.id)
}
}

The next property to tackle is the item’s priority, which will also use a Picker
view. Here, however, the type of the bound property and the type iterated by
the enclosed ForEach view already match up, so the explicit .tag(_:) call isn’t
needed. The Todoltem.Priority type conforms to Caselterable, so you’ll pass
Todoltem.Priority.allCases as the collection the ForEach view will iterate over. Lastly,
to see a properly localized representation of the priority, its rawValue will be
wrapped in a LocalizedStringKey:

3-ModifyingData/final/Do It/Views/TodoltemEditor.swift
Picker("Priority", selection: $item.priority) {
ForEach(TodoItem.Priority.allCases, id: \.self) {
Text(LocalizedStringKey($0.rawValue.capitalized))
}
}

Since these pickers are appearing in a Form, they will take on a particular
appearance by default, that of a NavigationLink with a value displayed at its
trailing edge. Tapping on the link will push a new Form view containing the
available options—tapping on one of these will assign the value and pop the
view from the navigation stack. If you change the Form to a List, though, you’ll
see that the picker changes to appear as an inline wheel control containing
the possible selections. Revert back to using a Form before continuing.

Editing Optional Properties

Following the priority, you'll add the UI to select a date for your to-do item.
This leads to an interesting issue, though, when no date is assigned, and the
property value is nil. In logical terms, the user may not want or need to assign
a date; in programming terms, the date property is an Optional. Date pickers—like
the other controls you've seen so far—are bound to a concrete value, not an
optional, so you'll need to lend a helping hand to make this work. You’ll also

http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Views/TodoItemEditor.swift
http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Views/TodoItemEditor.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 3. Modifying Application Data ¢ 70

need to do something similar for the notes property, which likewise may legit-
imately be nil.

To make this all work, you'll take a two-pronged approach. For binding the
notes and date properties, you’'ll create wrapper properties that transform nil
values into suitable ‘empty’ variants. In addition, while an empty string can
be easily turned into nil for the notes property, the same can’t be said of the
date because there isn’t a suitable ‘not a date’ value that the user could select
from a date picker. For that, then, you’ll create a new property used to toggle
the presence of a valid date on and off.

Add the following file-private extension for the Todoltem type inside TodoltemEdi-
tor.swift:

3-ModifyingData/final/Do It/Views/TodoltemEditor.swift
tine1 fileprivate extension TodoItem {
var hasDueDate: Bool {
get { date != nil }

set {
5 if newValue && date == nil {
date = Date()

}

else if !newValue {
- date = nil
10 }
- }

}

var definiteDate: Date {
15 get { date ?? Date() }
- set { date = newValue }

}
var definiteNotes: String {
20 get { notes ?? "" }
set {

if newValue.isEmpty {
notes = nil

}
25 else {
notes = newValue
}

30 }

The first property, hasDueDate, simply returns whether the date property is not
nil. On line 5 in its setter, the property checks whether it needs to assign a

http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Views/TodoItemEditor.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Building an Editor ® 71

concrete value to date; if so, it uses the current date, since this is a reasonable
initial value.

The second property is named definiteDate. It assigns any values straight through
to the real date property, but in the case there currently is no concrete value,
it will again return the current date, as seen on line 15.

The last property, definiteNotes, will return an empty string if there is currently
no concrete value to use. When a new value is assigned, it is either saved
directly to the underlying notes property, or—as you see on line 23—it will
translate any empty string into a nil value.

With these new properties in place, you can continue implementing the body
of the TodoltemEditor view. You'll start by adding a Toggle control bound to the
hasDueDate property. Turning this on will reveal the date picker itself, and
turning the toggle off will hide the picker. The picker, in turn, will be bound
to the new definiteDate property.

The use of two separate controls to work on a single logical value leaves you
with some nuances to consider, though. Visually the two controls are clearly
related, and the animation provides a visual cue to the nature of that relation.
The key word, however, is “visual,” and many of your app’s users will be
unable to see, and will not get those cues. To VoiceOver, these are simply two
separate controls, and to visually impaired users, the user interface consists
almost entirely of their labels. For users able to follow the visual cues, though,
the UI needn’t be cluttered with two separate descriptive labels (“a picture
says a thousand words,” they say).

Your solution here is to provide suitably descriptive labels to the controls for
VoiceOver's benefit, and then to hide those labels from the screen. You’'ll then
add a single Text view to serve as a label for visual purposes:

3-ModifyingData/final/Do It/Views/TodoltemEditor.swift

HStack {
Text("Due Date")
Spacer()
Toggle("Has Due Date", isOn: $item.hasDueDate.animation())
.labelsHidden()
}

Here, you've used a HStack to lay out a label followed by a Toggle control. The
toggle has the accessibility-compatible label of “Has Due Date,” and its
selection is bound to the hasDueDate property of the to-do item being edited.
You're also taking advantage of some of SwiftUI's built-in support for anima-
tions. Since bindings are frequently used for changing values, which in turn

http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Views/TodoItemEditor.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 3. Modifying Application Data ¢ 72

cause views to change, they provide quick means to attach animations to all
changes. Here, you use the .animation() method on Binding to get a new binding
that animates its changes. As you’ll see in a moment, the date picker control
is added to the view when the hasDueDate property is true—using the .animation()
modifier here will cause the picker to be moved into place with a suitable
animation.

Now you're almost ready to implement the date picker, but there’s one extra
factor worthy of consideration: is the due date for this to-do item just a day,
or a specific time of day? SwiftUI's DatePicker view can display either a date, a
time, or both, and it would be good to let the user choose the level of granu-
larity they want to use here (Apple’s Reminders application takes a similar
approach). To implement this, you'll need a new @State property that can be
adjusted with another Toggle, but you’ll need to do some additional set-up to
have it working; you need to inspect your item’s date property, if set, to see if
it contains a non-zero hour or minute, and set the state appropriately. That
will need to happen in the editor’s initializer, which means you’ll now have
to implement that yourself:

3-ModifyingData/final/Do It/Views/TodoltemEditor.swift
@State private var showTime: Bool

init(item: Binding<TodoItem>) {
self. item = item
self. showTime = State(wrappedValue: false)

if let date = item.date.wrappedValue {
let components = Calendar.current.dateComponents (
[.hour, .minute], from: date)
self.showTime = components.hour! != 0 || components.minute != 0

}

There’s some unusual activity here. There are no properties named _item or
_showTime in the code, but Xcode isn’t complaining at all—what’s going on?
The answer lies in the implementation of property wrappers, as described in
Property Wrappers, on page 58. Thus, when the compiler sees @State var

showTime: Bool, it effectively inserts the following code:

var enabled: State<Bool> = State(initialValue: false)
var enabled: Bool {

get { enabled.wrappedValue }

set { enabled.wrappedValue = newValue }

}

var $enabled: Binding<Bool> { enabled.projectedValue }

http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Views/TodoItemEditor.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Building an Editor ® 73

Swift normally synthesizes initializers for you and handles the details of cre-
ating a State instance from a regular value transparently. When you implement
the initializer yourself, however, you can’t just assign to showTime, as Xcode
will complain “Variable ‘self.showTime’ used before being initialized.” Instead,
you must initialize the wrapper type itself via the synthesized _showTime prop-
erty. The same, naturally, applies to the item argument: the view’s item property
is synthesized, and has a type of Todoltem, but the initializer has received a
Binding<Todoltem> instance. That argument must therefore be assigned to _item,
the Binding property itself.

Now you have everything you need to define the date picker; add the following
code at the bottom of the Form content to add the new rows:

3-ModifyingData/final/Do It/Views/TodoltemEditor.swift
if self.item.hasDueDate {
Toggle("Include Time", isOn: $showTime)
HStack {
DatePicker("Due Date", selection: $item.definiteDate,
displayedComponents: showTime

? [.date, .hourAndMinute]

1 .date)
.datePickerStyle(WheelDatePickerStyle())
.labelsHidden ()

.frame(maxWidth: .infinity, alignment: .center)

}

With this code, you check whether the toggle was enabled by looking at the
state to which it was bound. Remember that in SwiftUI views are just a gen-
erated representation of state—so you don’t check if a control is toggled on,
you check if a value is set, and trust that the toggle will display that value
appropriately. If the property is set, then two rows are added to the form: one
toggles the showTime property, and the next displays the date picker, bound
to the new definiteDate property.

As with the priority picker earlier, a Form will adopt a special layout for date
pickers by default; you can see it for yourself by removing the call to
.datePickerStyle(WheelDatePickerStyle()). Normally, a form will show an abbreviated
representation of the date value, and when you tap on it, a wheel-style picker
will animate into place below it. Tapping the row again will close the picker.
However, you already have your own toggle to enable/disable the date picker,
so here you explicitly request the wheel style of picker via the .datePickerStyle()
modifier. As with the “Due Date” toggle above, the picker’s label value is
visually superfluous, so you again hide it using the .labelsHidden() modifier.

http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Views/TodoItemEditor.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 3. Modifying Application Data ® 74

The use of .frame(maxWidth:alignment:) causes the picker to be centered onscreen
without needing to resort to Spacer views on either side. The .frame() modifier
takes a fairly large number of optional arguments, but here you're providing
a maximum width and an alignment. What this says is that the picker’s width
can grow larger than its intrinsic content size, and that its actual drawn
content should be centered within the view’s width. Without the max-width
value, the control’s size would be clamped tightly to its content, and the view
would be aligned to the left of the screen by the Form—which doesn’t look
great. Now it’'s still left-aligned, but it expands its bounding box to fill the
screen’s width, letting the picker itself center its content.

Launching a Text Editor

Last but not least, you need to add an interface for editing the notes field of
your to-do items. Since this can contain arbitrary content with multiple lines,
you’ll use a NavigationLink to push a full-screen text view. Unfortunately, SwiftUI
doesn’t yet provide a TextView type. Happily, it’s not too difficult to wire in a
standard UlMextView from UIKit, and if you look in AccessoryViews/TextView.swift
you’'ll find just that. There’s some fiddly wiring involved when it comes to
correctly mapping the SwiftUI environment across, so we won’'t go into the
details here. You’'ll learn about integrating views from UIKit and AppKit in
later chapters, but for now, just pretend that TextView is the same as any other
View type provided by SwiftUI.

Before creating the navigation link, you can make things a little easier on
yourself by defining a new property on TodoltemEditor to create and return the
text view. Recall that a NavigationLink takes a View as an argument to its initial-
izer, and chaining multiple view modifier calls inside of a parameter declaration
of another function call quickly becomes ungainly. Instead, create the following
property in TodoltemEditor:

3-ModifyingData/final/Do It/Views/TodoltemEditor.swift
var notesEditor: some View {
TextView(text: self.$item.definiteNotes)
.padding(.horizontal)
.navigationBarTitle("Notes: | (item.title)")

}

This wraps up the TextView initializer (bound to the new definiteNotes property
on Todoltem) and the couple of modifier calls you need to attach a navigation
bar title and a little padding on the leading and trailing edges of the screen.
With that in place, you can return to the body implementation and add the
final piece of the form:

http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Views/TodoItemEditor.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Presenting Modal Views ® 75

3-ModifyingData/final/Do It/Views/TodoltemEditor.swift
NavigationLink("Notes", destination: notesEditor)

With that done, the editor view itself is now complete. Now, you just need to
wire it into the detail view.

Presenting Modal Views

The editor you've created is designed to operate without maintaining its own
state. It operates via @Binding on data owned by someone else and doesn’t
make assumptions about ‘live’ versus ‘draft’ data, nor about saving versus
cancellation of the results. Making fewer assumptions about its use makes
it a more flexible component, but it means that anyone presenting it needs
to make those determinations themselves.

The detail view is going to present the editor in a modal sheet, wrapped in
the NavigationView required by the editor’s Form view. It will add Cancel and Done
buttons to the editor’s navigation bar, and those buttons will operate on the
state managed by the detail view. The editor itself will be bound to a local
copy of the to-do item being presented; if the user taps Cancel, the local copy
is discarded, while a tap on Done saves it to the data store, effectively com-
mitting the changes.

State

The detail view will need a few new properties to maintain the state required.
Open TodoltemDetail.swift and add the following properties to the TodoltemDetail
view:

3-ModifyingData/final/Do It/Views/TodoltemDetail.swift

@State private var editingItem: TodoItem = .empty
@State private var showingEditor = false

The first line here defines the local copy of the item to be manipulated by the
editor. It’s a @State variable so you can generate a binding for the editor to
use. However, since this is an implementation detail, you must provide a
default value for it; otherwise, anyone creating a TodoltemDetail will be required
to pass a value into its initializer. Since the initial value will be unused, you're
assigning it to an ‘empty’ value that you’ll define in a moment.

The next line is used to present the editor itself. Recall that in SwiftUI, views
are a function of state, and all changes to the Ul are driven by changes to
state data. This continues with the concept of presenting a modal view: your
state needs to include a value defining whether the modal view is shown or

http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Views/TodoItemEditor.swift
http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Views/TodoItemDetail.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

N oA wN

Chapter 3. Modifying Application Data ® 76

not. Here is that variable, and you’ll see shortly how it’s used to present and
dismiss the modal view containing the TodoltemEditor.

Right now you should have a compiler error. Xcode is informing you the
.empty value assigned to TodoltemDetail.editingltem isn’t defined anywhere. To
remedy that, add the following file-private extension to the Todoltem type at
the top of TodoltemDetail.swift:

3-ModifyingData/final/Do It/Views/TodoltemDetail swift
fileprivate extension TodoItem {
static var empty = TodoItem(title: "", priority: .normal,
listID: .null)
}

Now your code compiles happily.

Presentation

Next, you need to implement the scaffolding around the editor view. As
described in Presenting Modal Views, on page 75, you're going to embed the

editor in a navigation view with a pair of buttons to either commit or cancel
the pending edit. Let’s start by creating those buttons, beginning with cancel-
lation. Add the following property to TodoltemDetail:

3-ModifyingData/final/Do It/Views/TodoltemDetail.swift
private var cancelButton: some View {
Button(action: {
self.showingEditor.toggle()
A
Text("Cancel")
.foregroundColor(.accentColor)

}

This is a straightforward button with the simple task of dismissing the editor.
It accomplishes this task by modifying the showingEditor state value on line 3.
This will trigger SwiftUI to update the view content, dismissing the modal
sheet containing the editor.

Next comes the Done button, another property on TodoltemDetail:

3-ModifyingData/final/Do It/Views/TodoltemDetail swift
private var doneButton: some View {

Button(action: {
self.data.updateTodoItem(self.editingItem)
self.showingEditor.toggle()

DA
Text("Done")

.bold()

http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Views/TodoItemDetail.swift
http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Views/TodoItemDetail.swift
http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Views/TodoItemDetail.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Presenting Modal Views ¢ 77

.foregroundColor(.accentColor)

The button’s action here also toggles showingEditor to dismiss the modal sheet,
but before that, it needs to save the changes. The editor has been operating
on a local copy of the data, while the source of truth lives in an Array in the
DataCenter within the environment. To save the to-do item, the value in that
array needs to be updated, so you use a DataCenter API call to do that on line
3.

You likely have noted that you're not altering the value of the Todoltem being
used to present the detail view itself. In fact, looking at the declaration, it's
an immutable property. You wouldn’t be amiss to think that when you exit
the editor, you’ll see the same old data you started with since that hasn’t
changed.

SwiftUI is way ahead of us here. By updating the array in the DataCenter, all
views based on that data are recomputed. First, the TodoltemList view has its
body invoked, and that then re-defines the TodoltemDetail views that are the
targets of each row, including the one currently on-screen. SwiftUI maps all
these values onto the existing visible view hierarchy, triggering redraws of
their content, so the detail view does have its content modified, but it's SwiftUI
that does the work of propagating those changes for you.

At this point, you have two buttons—let’s give them somewhere to live. Define
the content of the modal editor sheet with the following new property on
TodoltemDetail:

3-ModifyingData/final/Do It/Views/TodoltemDetail.swift
private var editor: some View {
NavigationView {
TodoItemEditor(item: $editingItem)
.navigationBarItems(leading: cancelButton,
trailing: doneButton)

}

With this code, you've created a TodoltemEditor, binding it to the editingltem
property, and you've wrapped it in a navigation view. The two buttons are
attached to the editor view as navigation bar items; Done on the trailing edge,
Cancel on the leading.

Next, you need to provide the user with some way to invoke the editor, and
then actually present it.

http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Views/TodoItemDetail.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 3. Modifying Application Data ¢ 78

Launch the Editor

It's common to have an Edit item on the trailing edge of the navigation bar
for editable views. You'll follow this convention, using the pencil-in-a-square
icon commonly used to represent edit actions. Once more, you're going to
place this in a new property within TodoltemDetail to allow for more brevity and
clearer code within the view’s body:

3-ModifyingData/final/Do It/Views/TodoltemDetail.swift
private var editButton: some View {
Button(action: {
self.editingItem = self.item
self.showingEditor.toggle()

Ao
Image(systemName: "square.and.pencil")
.imageScale(.large)
.foregroundColor(.accentColor)

}
.accessibility(label: Text("Edit"))

}

The button’s action performs two operations: it starts by setting the value of
the editingltem property that will be bound to the editor. Doing this at the last
moment ensures the most up-to-date data is used. Next, the showingEditor
property is toggled, informing SwiftUI that the modal sheet is to be displayed
(you’ll wire up that functionality momentarily).

Note also a new modifier being used on the button: .accessibility(label:). Since the
edit button only uses an icon, any user with visual impairments would benefit
from a more descriptive name, and this modifier attaches just that. When a
user activates VoiceOver to describe what's on the screen, it will announce
that this is a button labeled “edit.” Without this, the response would likely
be something like “a button with an image: square and pencil,” which isn’t
particularly illuminating.

Your last task is to update the body implementation to add the edit button
and present the editor itself. The edit button is added to the navigation bar
using the familiar .navigationBarltems(trailing:) method, but presenting a modal
view requires a new tool: .sheet(isPresented:content:).

In SwiftUI parlance, a full-screen modal view is called a sheet. Their presen-
tation is—like everything in SwiftUI—tied into the values of @State properties.
A couple of different options exist, but the one you’ll use here simply binds
to a boolean value that toggles presentation of the view on an off: while the
value is true, the modal view is presented, and while false it is not. SwiftUI

http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Views/TodoItemDetail.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

YYVYY

Presenting Modal Views ¢ 79

automatically uses the appropriate transition to animate its arrival and
departure.

All this is done by appending two modifiers to the content of TodoltemDetail.body:

3-ModifyingData/final/Do It/Views/TodoltemDetail.swift
var body: some View {
VStack(alignment: .leading) {
// « view content »
}
.navigationBarTitle("", displayMode: .inline)
.navigationBarItems(trailing: editButton)
.sheet(isPresented: $showingEditor) {
self.editor.environmentObject(self.data)
}
}

With that in place, you're ready to roll.

http://media.pragprog.com/titles/jdswiftui/code/3-ModifyingData/final/Do It/Views/TodoItemDetail.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 3. Modifying Application Data ¢ 80

Cancel Editing: Complete SwiftUl book... Done

Complete SwiftUl book sample

List SwiftUl Book
Priority High
Due Date

Include Time

Test the Code

Your application is now ready to go. Launch it in the Simulator or on an
iPhone and try changing a few things. Note that edits you confirm are visible
when you return to the detail and list views, and even survive after you quit
and relaunch the app.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

What You Learned © 81

What You Learned

You've now dug deeper into the state management system of SwiftUI and are
beginning to see the edges of the “view as a function of state” approach it
uses. You have some further tools at your disposal:

e You know when and how to use @State, @Binding, @ObservedObject, and
@EnvironmentObject to make state available across your applications.

* You understand the implementation of property wrapper types and can
deal with them explicitly when necessary.

e You've worked with the Form type, and with several types of Ul controls.

* You can present and manage modal interfaces via the .sheet() operator.

e When it comes to accessibility, a little can go a long way. By keeping in
mind how your application might be described via VoiceOver, you can
ensure you provide a good experience to all your users.

In the next chapter, you’ll look at the facilities provided for editing collections
of data, dynamically adding, removing, and re-ordering items, and you’ll work
with filtering list data at runtime.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

CHAPTER4

List Mutation

Story Map

Why do I want to read this?
While you've seen how to edit individual items, you haven’t yet seen how
you might perform mutations on collections themselves.

What will I learn?
You'll learn about sections and section headers. You’'ll see how you can
easily implement adding, removing, and moving members of a collection.
You'll see how to update collection views to support specific subsets of
your data model.

What will I be able to do that I couldn’t do before?
You'll be able to create and manage lists with all the self-confidence you
have when working with UlTableView, and you’ll have some familiarity with
more elaborate collection views.

Where are we going next, and how does this fit in?
Next you’'ll look at the SwiftUI gesture system and how you can define
your own custom interactions, and how the power tools of SwiftUI let you
work with geometry information.

In earlier chapters, you built a working to-do list application, complete with
presentable detail views, colorful lists, and complex editors. Your users can
find existing items and change them, but that’s about all—there’s currently
no way to remove items or to add new ones. There’s also something to be
desired in the list presentation itself, as once a list grows, it will start to be
harder to locate items quickly. While the ability to sort the list is helpful, it
would be more helpful to quickly focus in on particular subsets of your data,
such as which items are due today, or which are overdue. These tasks are
what you'll tackle in this chapter.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 4. List Mutation * 84

To work along with this chapter, use a copy of the starter project in code/p6-
starter. As in Chapter 5, Custom Views and Complex Interactions, on page 101
it contains some adjustments to tidy up the code, and it includes a few new
files. If you're following along with your own project, these files have either

been added or modified:

e Affordances/ltemGroups.swift

¢ Model/DataCenter.swift

¢ TodoList.swift

e TodoListChooser.swift has been renamed to Home.swift, and TodoListChooser renamed
to Home to match.

e SceneDelegate.swift

Of particular note is a change in TodoList.swift which reorganizes its data storage.
Rather than having an optional TodoltemList, it now uses an internal enum type
to describe the type of data it represents:

p6-starter/Do It/TodoList.swift
private enum ListData {
case list(TodoItemList)
case items(LocalizedStringKey, [TodoItem])

}

@State private var listData: ListData

You’'ll update this to include a new type very shortly. Also, in this file, you’ll
see that the numerous properties and methods are now defined mainly in
extensions and that there’s even one empty extension definition. You'll update
all of these through the course of the chapter.

Using Sections and Header Views

When you created the original TodoListChooser, you used a pair of Section views
to break up the content of the list into two parts: one contained a single
static row titled “All Items,” while the second contained the list rows them-
selves. The design of the list rows was based on the home screen for Apple’s
Reminders application, but if you look at that app now, you’ll see that the
rest of its home screen is quite different. You're going to assemble the same
interface here using a section header view and design it to look good in both
light and dark color schemes:

http://media.pragprog.com/titles/jdswiftui/code/p6-starter/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Using Sections and Header Views ¢ 85

Today Scheduled Scheduled

(&) s O 3 A

All Overdue Overdue

Each item will act as a navigation link leading to the familiar TodoList view but
will refer to a dynamic set of items. To define the data for these groups, the
TodoltemGroup enum type has been defined—you’ll find it in Affordances/Item-
Groups.swift. Open that file and look around; you’'ll see that it defines four groups
and has properties that provide the title, color, and icon views for you to use.

Start on your headers by creating a new SwiftUI View named HomeHeader.swift.
At the top of the view’s definition, above the body implementation, add the
following static property:
p6/Do It/HomeHeader.swift
static let layout: [[TodoItemGroup]] = [

[.today, .scheduled],

[.all, .overdue],

]

This is a simple two-dimensional array that you’ll use to populate the four
groups with the aid of a pair of ForEach views. This is a fairly straightforward
task; here’s the main part of the body property definition:

p6/Do It/HomeHeader.swift
var body: some View {
VStack {
ForEach(Self.layout, id: \.self) { row in
HStack(spacing: 12) {
ForEach(row, id: \.self) { group in
NavigationLink(destination: TodoList(group: group)) {
V2 S

}

}

The content is going to take more than a couple of lines to define, so you'll
create a private View for that; for the moment, place a Text view inside the
NavigationLink:

NavigationLink(destination: TodoList(group: group)) {

http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/HomeHeader.swift
http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/HomeHeader.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

>

Yvy

Chapter 4. List Mutation ® 86

Text(group.title)
}

That will fill out the preview nicely, or rather it would—except that Xcode isn’t
happy with what you just wrote. “There is no TodoList(group:),” it’s saying, and
... well ... it’s right. Let’s fix that now.

Open TodolList.swift and look at the ListData definition. You're going to need to
add a new case to that, and define a new initializer to match. Update the class
with the following code:

p6/Do It/TodoList.swift

private enum ListData {
case list(TodoItemList)
case items(LocalizedStringKey, [TodoItem])
case group(TodoItemGroup)

}
// & Properties »

init(list: TodoItemList) {
self. listData = State(wrappedValue: .list(list))
}

init(title: LocalizedStringKey, items: [TodoItem]) {
self. listData = State(wrappedValue: .items(title, items))
}

init(group: TodoItemGroup) {
self. listData = State(wrappedValue: .group(group))
}

That will take care of the error in HomeHeader.swift, but it’s created some more
right here in TodoList.swift. Scroll down to find the lines where Xcode is reporting
errors, at the tail end of the “Helper Properties” extension. There are three
computed properties here that use the listData property to determine their
results. Update them to return values for the new .group case:

p6/Do It/TodoList.swift

private var items: [TodoItem] {
switch listData {
case .list(let list): return data.items(in: list)
case .items(, let items): return items

case .group(let group): return group.items(from: data)

}
}

private var title: LocalizedStringKey {
switch listData {
case .list(let list): return LocalizedStringKey(list.name)
case .items(let name, _): return name
case .group(let group): return group.title

http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/TodoList.swift
http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Using Sections and Header Views ¢ 87

}

private func color(for item: TodoItem) -> Color {
switch listData {
case .list(let list): return list.color.uiColor
case .items: return data.list(for: item).color.uiColor
> case .group(let group): return group.color
}
}

Xcode is now happy, and you can return to your header view definition. Open
HomeHeader.swift.

Dynamic View Content

The individual items in your header will have a simple implementation, con-
sisting of a white background with rounded corners topped with two horizontal
rows containing data. The top row will contain a colored icon on the leading
edge with the count of matching items on the trailing edge, in large clear text.
Below that will be the name of the group, slightly muted with a secondary
color. Both the counter and name will use a rounded font variant, with a bold
and medium appearance, respectively.

Add a new View type inside the HomeHeader definition, below the body property:

p6/Do It/HomeHeader.swift
Line1 private struct HeaderItem: View {
let group: TodoItemGroup
@State var itemCount: Int = 0

5 var body: some View {
VStack(alignment: .leading) {
HStack {
group.icon
= Spacer()

10 Text("\|(itemCount)")
.foregroundColor(.primary)
.font(.system(.title, design: .rounded))
.fontWeight(.bold)

}

Text(group.title)
.foregroundColor(.secondary)
.font(.system(.subheadline, design: .rounded))
.fontWeight (.medium)
20 }
.padding()
.background(
RoundedRectangle(cornerRadius: 15, style: .continuous)

http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/HomeHeader.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

25

-}

Chapter 4. List Mutation * 88

.fill(Color(.tertiarySystemBackground))

Everything here should look familiar by this point, with the exception perhaps
of the color on line 24. Here, you're again using one of UIKit's semantic colors,
specifically for something layered on top of a secondary background. The List
view’s grouped background is considered secondary, so the tertiary color
works well here, and matches what Apple uses in their Reminders app.

There’s something missing here, though: the counter text is never updated.
It's stored in a state property, so the view will update when it changes, but
it never actually changes. You might add a custom initializer to set its value
from the input group on creation, but that requires access to a DataCenter envi-
ronment object. Well, you could add one of those just as you have elsewhere,
but that would reveal another problem: it wouldn't work within the view’s
initializer. Because the environment object is installed through a view modi-
fier, the underlying view will already have been created and initialized before
the .environmentObject() call happens. If you try to read from an environment
object inside your initializer, you're likely to crash—certainly in the preview,
and possibly elsewhere in your app, depending on how SwiftUI builds and
initializes its view hierarchy. That’s all out of your control, though, so you
can’t rely on that behavior everywhere.

Of course, if you were to set your itemCount when initialized, what would happen
if the data changed? Let’s say you changed the date on an overdue item to
today? The count for the “Overdue” group should decrement, and the “Today”
group’s should increment, but there’s no guarantee that will happen. There
is a solution, however, and it'll work in every situation, meaning each Headerltem
will be entirely in control of its own dynamic content, not relying on any other
view’s updates, or on SwiftUI's rendering mechanisms.

Remember that DataCenter.todoltems uses the @Published property wrapper. This
wrapper’s projected value, $todoltems, returns a Publisher instance from the
Combine framework. Combine is Apple’s suite of reactive programming tools,
implementing a publisher-subscriber API for passing data and events around
your application. SwiftUI is using this under the covers to determine when
your item lists are changing, and their related views need to be updated;
there’s more you can do with them, though. You can attach to publishers
directly by yourself and handle the values they publish when that happens;
this sounds like exactly the tool you need.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

YVYY

Line 1
2

Using Sections and Header Views ® 89

If you subscribe to the output of the $todoltems publisher, then your subscriber
will immediately be given that publisher’s current value. After that, whenever
the list of items changes, your subscriber will receive the new set. You can
use this to update your item count, recalculating its value any time any items
are modified. This is such a common occurrence, in fact, that SwiftUI provides
a view modifier for just this purpose: .onReceive(_:perform:). The method takes a
Publisher instance and a block which will be passed the output of the publisher,
handling all the subscription details internally.

To implement this approach, you’ll need to read the DataCenter from the envi-
ronment and respond to changes in the item list by asking your group for its
matching items, then assigning the number of items within that collection to
your itemCount state property. The .onReceive() modifier can simply be attached
to the existing VStack:

p6/Do It/HomeHeader.swift
@EnvironmentObject var data: DataCenter

var body: some View {
VStack(alignment: .leading) {
V2 P

}
.onReceive(data.$todoItems) { in
self.itemCount = self.group.items(from: self.data).count

}
/K& »

}

Your header item view is complete—you can drop it into place inside HomeHead-
er.body now:

p6/Do It/HomeHeader.swift
NavigationLink(destination: TodoList(group: group)) {
HeaderItem(group: group)

}

Previewing

If you refresh your canvas now, you'll see your header view showing up in
the correct proportions, but the backgrounds won’t show up—they're white
on a white background. Let’s fix that and take a look at how it appears in
dark mode at the same time. Replace the content of the view’s preview with
this familiar-looking implementation:

p6/Do It/HomeHeader.swift

ForEach(ColorScheme.allCases, id: \.self) { colorScheme in
HomeHeader ()

http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/HomeHeader.swift
http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/HomeHeader.swift
http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/HomeHeader.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 4. List Mutation ¢ 90

.padding()
.background(Color(.systemGroupedBackground))
.colorScheme(colorScheme)

}
.previewlLayout(.sizeThatFits)
.environmentObject(DataCenter())

The most important part here is the .background() modifier on line 4: the color
used here is the one used by the List view when it’s using a grouped style, and
by using it here you can see exactly how the header will appear when you
add it to your Home view.

Modifying List Data

Open TodolList.swift and look around to familiarize yourself with its content. In
the starter project for this chapter, the implementation has been shuffled
around a bit in the interests of readability. The main struct definition now
contains only properties and the body implementation, with everything else
moved into extensions. Firstly, there’s an extension marked “Helper Proper-
ties;” the sortButton implementation has been moved here, and you’ll add some
more shortly. The next extension, marked “Sorting,” contains the sortedltems
property. Below that, there’s an empty extension marked “Model Manipula-
tion,” which is waiting for some content.

Right at the bottom of the file is the SortOption type. Start by adding a new case
to this enumeration, named manual:

p6/Do It/TodoList.swift
fileprivate enum SortOption: String, Caselterable {

case title = "Title"

case priority = "Priority"
case dueDate = "Due Date"
case manual = "Manual"

var title: LocalizedStringKey { LocalizedStringKey(rawValue) }
}

You likely have a compiler error showing up now, pointing to the lack of a
clause for the new .manual case in the sorteditems property. This is simple to fix,
since the manual sort option essentially means “don’t sort anything, use the
items in their existing order.” Scroll up to the sortedltems property implementa-
tion and update it:

p6/Do It/TodoList.swift

private var sortedItems: [TodoItem] {
if case .manual = sortBy { return items }

return items.sorted {

http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/TodoList.swift
http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

vy

Line 1

uoh W

Modifying List Data ¢ 91

switch sortBy {
case .title:

return $0.title.lowercased() < $1.title.lowercased()
case .priority:

return $0.priority > $l.priority
case .dueDate:

return ($0.date ?? .distantFuture) <

($1.date ?? .distantFuture)

case .manual:

fatalError("unreachable")

}

You handle the .manual case upfront by returning the input item list unchanged.
In the switch statement, though, you still need a clause handling that case, so
here you simply fire off a fatal error—it shouldn’t be possible to reach here,
and if it does, something very bad is happening, and you want it to crash and
dump lots of useful info in the process.

Next, head up to the top of the file and look at the state variables. Right now
you have three items there: sortBy, showingChooser, and showingListEditor. The default
sort option should now be .manual, so make that change now:

p6/Do It/TodoList.swift

@State private var sortBy: SortOption = .manual

@State private var showingChooser: Bool = false

@Environment (\.presentationMode) private var presentationMode

Adding to the List

The first and easiest editing function you can implement is addition. You
already have an editor view for Todoltems—all you need is the means to trigger
its appearance and a way to save it. This can all function in exactly the same
manner as you used in the previous chapter, with a state property used to
present the editor in a modal sheet and a state variable used to hold a tempo-
rary Todoltem for the editor to use.

Scroll to the main struct definition for TodoList, and add the following properties:

p6/Do It/TodoList.swift

private static let itemTemplate = TodoItem(
id: Int.min, title: "New Item", priority: .normal,
notes: nil, date: nil, listID: 2002, complete: false)

@State private var editingItem = Self.itemTemplate

The two @State property is familiar, but the item on line 1 is new. This provides
a simple starting value for a new Todoltem instance, and is used to initialize

http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/TodoList.swift
http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 4. List Mutation ® 92

the editingltem property each time a new item is added. Note that its id property
is set to something essentially invalid to begin with; the DataCenter will replace
this when the new item is placed in the list.

Presenting the item editor will be a little different than what you've seen before,
though. It seems logical to add a new .sheet(isPresented:content:) modifier next to
the one used to present the list editor from the last chapter, but it so happens
that the isPresented: variant only works when it’s alone; if you have two of them,
only the last one will function. This likely indicates that SwiftUI is using the
environment internally to set this up; thus, one modifier is overriding the
value placed by another.

Instead, you’ll use the more flexible version, .sheet(item:content:), which accepts
a binding to an optional Identifiable value that you'll use to determine what to
present. When the bound value is nil, nothing will be displayed. When it’s
non-nil, its value will be passed to the content block, which should then return
a view.

To implement your value, use an enum type with two values, conforming to
Identifiable and Hashable, then create a state property to hold one of these, with
a default value of nil:

p6/Do It/TodoList.swift

private enum EditorID: Identifiable, Hashable {
case itemEditor
case listEditor

var id: EditorID { self }
}

@State private var presentedEditor: EditorID? = nil

Now, scroll down to the “Helper Properties” extension, and below the sortButton
property implementation, add two new properties:

p6/Do It/TodoList.swift
private var addButton: some View {
Button(action: {
self.editingItem = Self.itemTemplate
self.presentedEditor = .itemEditor
A
Image(systemName: "plus.circle.fill")
.imageScale(.large)
.accessibility(label: Text("Add New To-Do Item"))

}

private var editorSheet: some View {
let done = Button(action:{
self.data.addTodoItem(self.editingItem)

http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/TodoList.swift
http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

vy

Modifying List Data ® 93

self.presentedEditor = nil
H A

Text("Done")
.bold()

}

let cancel = Button("Cancel") {
self.presentedEditor = nil
}
return NavigationView {
TodoItemEditor(item: $editingItem)
.navigationBarItems(leading: cancel, trailing: done)

}

Here, you have a Button for the navigation bar that will present an editor for
a new Todoltem instance. Its action resets the editingltem to the template created
above, then it shows the editor sheet. Note the use of the .accessibility(label:) view
modifier to provide a textual description to go with the image-based button.

The editor itself is defined in editorSheet; this creates the “Done” and “Cancel”
buttons similar to the ones you used in Presenting Modal Views, on page 75
and attaches them to a TodoltemEditor wrapped in a NavigationView. The only dif-
ference is the action for the Done button, which now calls data.addTodoltem() to
place the new Todoltem into the data store. This should all look quite familiar

by this point.

The last step is to attach the new button to the navigation bar. Since the next
step will be to add general editing support for the list, you can add a standard
Edit button to the bar’s leading edge at the same time. Find the barltems
property and update it to include two more items:

p6/Do It/TodoList.swift
private var barItems: some View {
HStack(spacing: 14) {
if isList {
Button(action: { self.presentedEditor = .listEditor }) {
Image(systemName: "info.circle")
.imageScale(.large)
}
}
sortButton
addButton
EditButton()

}

The EditButton is a view provided by SwiftUl, which toggles the editing mode
stored in the environment; you’ll see its effects soon. If you refresh your Xcode

http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 4. List Mutation ® 94

canvas, you'll see that and the new Add button, but the appearance looks a
little off next to the Sort button. Find the sortButton implementation and change
it to use a similar circular filled symbol:

p6/Do It/TodoList.swift
Button(action: { self.showingChooser.toggle() }) {
Image(systemName: "arrow.up.arrow.down.circle.fill")
.imageScale(.large)
.accessibility(label: Text("Sort List"))

}

That looks better. Now, to present your editors when the buttons are tapped,
find the existing .sheet() modifier attached to the List view in your body imple-
mentation, then replace it with the following;:

p6/Do It/TodoList.swift
.sheet(item: $presentedEditor) { which -> AnyView in
switch which {
case .itemEditor:
return AnyView(
self.editorSheet
.environmentObject(self.data)
)

case .listEditor:
return AnyView(
TodoListEditor(list: self.list!)
.environmentObject(self.data)

}

Note that the block has to always return the same view type. Since you're
presenting either a TodoltemEditor or a TodoListEditor, you have to wrap them in
an AnyView to ensure you're always returning an instance of the same type.

If you start up a live preview now, you’ll be able to call up an editor and create
new items to your heart’s content, while the list editor button will still function
as before. All that remains is to implement support for deleting and manually
reordering items, both of which come built-in.

Deleting and Moving List Items

The EditButton you added to the navigation bar provides access to controls to
delete and reorder rows, but to access the functionality, you’ll need to enable
it through some view modifiers. The .onDelete() modifier provides a block to run
in response to a deletion interaction, and it passes in an IndexSet containing
the indices of all the items being removed. Similarly, the .onMove() modifier is
called when the user drags to move rows from one location to another within

http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/TodoList.swift
http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Modifying List Data ® 95

the list. This block receives the offsets of the items being moved and the single
index to which they should go.

Happily, SwiftUI provides convenience functions on indexable Swift collections
(such as Array) that take the same inputs and will perform the work for you.
All you need to provide are the blocks for the two modifiers, which seems
simple enough.

At least, it would be—if you weren't displaying a list that’s been re-ordered,
meaning the indices of the visible rows and their indices within DataCen-
ter.todoltems are not the same. Picking a non-manual sort order, then deleting
items leads to some strange behavior if you pass through the IndexSet
unmodified; your humble author found himself scratching his head in confu-
sion for some time before realizing what was going on.

Scroll down in TodoList.swift to find the empty extension titled “Model Manipu-
lation.” If you're not using the starter project directly, create a new extension
on the Todolist class. Inside here, you’ll implement both the methods used to
translate from visible-row indices to data-list indices and the methods that
will move and delete items from your data source.

Start with the translation methods:

p6/Do It/TodoList.swift
private var usingUnchangedList: Bool {
sortBy == .manual

}

private func translate(offsets: IndexSet) -> IndexSet {
guard !usingUnchangedList else { return offsets }
let items = sortedItems // calculate this just once
return IndexSet(offsets.map { index in
data.todoItems.firstIndex { $0.id == items[index].id }!
1)
}

private func translate(index: Int) -> Int {
guard !usingUnchangedList else { return index }
return data.todoItems.firstIndex { $0.id == sortedItems[index].id }!

}

There are three items here. First is a property that will return true if the list
is manually sorted. If that’s the case, then the visual indices and the data
indices match, and no translation needs to happen.

The next two methods translate either a single index or an entire IndexSet.
They function by using the provided index to locate an item within the visiblelt-
ems array, then look up the item with the same id within data.todoltems.

http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

Chapter 4. List Mutation ® 96

With this in place, you can implement the delete and remove methods them-
selves:

p6/Do It/TodoList.swift

private func removeTodoItems(atOffsets offsets: IndexSet) {
let realOffsets = translate(offsets: offsets)
data.removeTodoItems(atOffsets: realOffsets)

}

private func moveTodoItems(fromOffsets offsets: IndexSet, to newIndex: Int) {
let realOffsets = translate(offsets: offsets)
let reallndex = translate(index: newIndex)
data.moveTodoItems(fromOffsets: realOffsets, to: reallndex)

}

Each of these translates the supplied indices and then calls through to a
method in DataCenter (provided in this chapter’s starter project), which in turn
simply calls the SwiftUI-provided collection methods in a thread-safe manner.

Now only one step remains—adding the view modifiers. Note, however, that
you only want to support moving items while using the manual sort ordering;
moving items around while sorted by date rather defeats the purpose of
sorting them. As it happens, the .onMove() modifier can be passed nil to disable
reordering completely, so you'll check the current sortBy value to determine
whether to enable that feature, and pass nil in all other cases.

Find the ForEach view definition in TodoList.body and add these view modifiers
after its closing brace:

p6/Do It/TodoList.swift
.onDelete { self.removeTodoItems(atOffsets: $0) }

.onMove(perform: self.sortBy == .manual
?7 { self.moveTodoItems(fromOffsets: $0, to: $1) }
: nil)

In the .onMove() modifier on line 4 a ternary operator is being used to either
install a handler or to set its value to nil. This is because you only want to
allow the user to re-order items when in manual ordering mode. By passing nil
in every other case, you disable the move functionality; by using the ternary
operator to make this decision inline, you help SwiftUI detect that this partic-
ular modifier’s value is driven by the sortBy state property. When in doubt, it’s
best to try and make these calculations happen at the same time you hand
their results into SwiftUI because the framework can infer a lot of information
about the view graph and its relation to the underlying data based on seeing
when certain data is accessed while the view graph is being assembled.

http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/TodoList.swift
http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

Modifying List Data ® 97

Coming Home

Now let’s do the same for the Home view. First, you'll need the usual state
variables used to present the sheet. You’'ll need a template TodoltemList to pass
into the editor, and you’ll need a button used to create the new item.

Open Home.swift and update the content of the Home view:

p6/Do It/Home.swift
static private let listTemplate = TodoItemList (
id: Int.min, name: "New List", color: .blue, icon: "list.bullet")

- @State private var showingEditor = false

var body: some View {
NavigationView {
V2 P
}
.sheet(isPresented: $showingEditor) {
TodoListEditor(list: Self.listTemplate)
}
}

- private var addButton: some View {

20

Button(action: { self.showingEditor.toggle() }) {
Image(systemName: "plus.circle.fill")
.imageScale(.large)
.accessibility(label: Text("Add New List"))

}

This is all familiar. Note on line 10 that since the TodoListEditor doesn’t operate
on a binding, it is passed the listlemplate directly. Being a value type, the editor
receives and operates on a copy of the template.

Implementing delete and move operations for the lists is simpler than it was
for the TodolList view, since the content of the view is essentially always manu-
ally ordered. This means that you can dispense with index translations and
pass the indices from SwiftUI directly into the DataCenter. Add the view modifiers
to the end of the ForEach view, as before, and add navigation bar items for
addButton and an EditButton:

p6/Do It/Home.swift
List {
Section(header: HomeHeader().padding(.vertical)) {
ForEach(data.todoLists) { list in
NavigationLink(destination: TodoList(list: list)) {
Row(name: list.name,

icon: list.icon,
color: list.color.uiColor)

http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/Home.swift
http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/Home.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 4. List Mutation ® 98

}
.onDelete { self.data.removeLists(atOffsets: $0) }

.onMove { self.data.moveLists(fromOffsets: $0, to: $1) }

vy

}

.font(.system(.headline, design: .rounded))
.listStyle(GroupedListStyle())
.navigationBarTitle("Lists")

» .pavigationBarItems(leading: EditButton(), trailing: addButton)

Manually Following Changes in Data

Following the principles described in Dynamic View Content, on page 87, the
TodoList view should own the task of observing changes to its content. While
its list content usually comes from DataCenter.todoltems, which is already moni-
tored by SwiftUI, that’s not always the case, and isn’t the case for everything.
Looking at the ListData type, for instance, one can see several cases where
model value types have been copied out of the DataCenter. ListData.items contains
a copied list of Todoltem instances. If one of these items is deleted from the
data store, nothing happens to the copy being used by this view. Similarly,
while the TodoltemList held by ListData.list will fetch items through the DataCenter,
the same can’t be said for the list itself: its title, icon, and color might change,
leaving the TodoList with incorrect data.

The solution to this is to update the static data inside the listData state property
when the underlying data store changes. In the case of ListData.group, nothing
needs to be done, since everything is fetched dynamically from the DataCenter.
For both .list and .items cases, however, you'll need to fetch any updates and
apply them to the local values.

Start by implementing the update method. Place this inside the TodoList
extension titled “Model Manipulation,” just below moveTodoltems(fromOffsets:to:):

p6/Do It/TodoList.swift
Line1 private func updateData() {
switch listData {
case let .items(title, items):
let newItems = data.items(withIDs: items.map { $0.id })
5 listData = .items(title, newItems)

case let .list(list):
if let newList = data.todoLists.first(where: { $0.id == list.id }) {
- listData = .list(newlList)
10 }
- else {
// List is gone!
forciblyDismiss()

http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

-}

YVYY

Manually Following Changes in Data ® 99

case .group:
break

}

On line 3 you handle the case where a specific collection of items is being
used. The identifiers of the included items are used to fetch fresh copies from
the DataCenter, which will leave out any that have been removed from the store.
The new items are used to reset the listData property.

Meanwhile on line 7, you handle any changes to the TodoltemList copy being
held. Here you fetch the list with the matching identifier and use that to reset
listData. Here, however, a particular situation arises: while the view might
legitimately display that a certain list has no items, it can’t reasonably do the
same thing for the list itself. If the list it's displaying is deleted, this view
should no longer exist. It's for that reason that you call forciblyDismiss() on line
13; that method will use the current PresentationMode from the environment to
pop the TodoList from the top of the navigation stack.

With all the possibilities of stale data taken care of, you now need only to call
updateData() when the underlying store changes. This can be done by taking
an idea from DataCenter itself, using its @Published properties to trigger an action
via the .onReceive() view modifier. Attach this modifier to end of the List view in
the body implementation, after the .sheet() modifier:

p6/Do It/TodoList.swift
@State private var listData: ListData

/] K L..»
var body: some View {
List {
/] K oL..»
}

// & existing view modifiers »
.onReceive(data.$todoItems.combineLatest(data.$todoLists)) { in
self.updateData()
}
}

Here, you've used the .combinelatest() modifier from the Combine framework to
be signaled when either the todoltems or todolists properties change. Another
example of this can be found in DataCenter.swift, in the saveWhenChanged() method.

At this point, you're done—congratulations. You now have a fully editable to-
do list.

http://media.pragprog.com/titles/jdswiftui/code/p6/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 4. List Mutation ¢ 100

Q O cEdit
All Items

@ Complete SwiftUl book sample

8/3/19, 2:30 PM

() Feed the cat

Buy food for Friday night

O Send final draft to editor

2/19/20, 2:30 PM

~ Chnnce fnvar imane

What You Learned

This chapter has touched on several important items of SwiftUI design:

* You learned to manually react to changes in data with the aid of publish-
ers.

e You worked with editable lists, adding, removing, and reordering items,
correctly handling cases where on-screen and data-store locations don’t
match.

¢ The application’s home screen now has a bespoke interface tailored into
the List itself.

* Your list view is more flexible than ever, supporting several different types
of initialization, used for several purposes.

Now that your lists are looking good, you’ll spend some time working with
custom views—going beyond simple stacks of other views—and how to define
and handle user interactions through SwiftUI's gesture system.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

CHAPTER 5

Custom Views and Complex Interactions

Story Map

Why do I want to read this?
User interaction isn’t all simple pickers and text fields. You need to be
able to design and implement more complex reactive interfaces. You will
also need to understand the basic building blocks of custom views, like
shapes and gradients, and how to put them to use.

What will I learn?
You'll see how to factor out code into reusable modules called view modi-
fiers, and you’ll make more use of the button styles used earlier in the
book. Most importantly, you'll learn how to use SwiftUI's anchor system
of coordinate management and translation through a new pair of controls
cut from whole cloth.

What will I be able to do that I couldn’t do before?
You'll be able to respond to direct user input and use that to inform the
layout and appearance of your views and their underlying data in new
and novel ways. You'll have an understanding of the tools necessary to
implement direct feedback and absolute positioning, which worked quite
differently in the iterative model.

Where are we going next, and how does this fit in?
In the next chapter you'll look at the preview functionality of the Xcode
canvas and how it can help you rapidly diagnose and solve a variety of
issues.

At this point, you now have a working application that displays and edits to-
do items. Your detail view is presentable, and your editor makes good use of
both animation and VoiceOver labels to provide important cues to your users.
But it’s missing something: there’s no way to make changes to any of the

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 5. Custom Views and Complex Interactions ¢ 102

properties of a TodoltemList. Unlike text fields, sliders, and pickers, the editable
content of a list doesn’t rely much on the built-in editor controls. In this
chapter, you're going to create that missing editor, providing the means to
update the list’s name, icon, and color. In the process, you’ll build a fully-
functional color picker and learn about the tools SwiftUI provides for managing
coordinates systems.

This chapter comes with a starter project containing some resources and code
that you'll use while building out the new functionality. You can find a com-
plete starter project in the code archive' inside the p5-starter folder. Alternatively,
you can follow along in your own project by importing the following new and
updated files:

o Affordances/

— Trigonometry.swift
— HSBWeelHelpers.swift
— Formatters.swift

e Resources/

— list-icons.json
Creating Custom Controls

Your list editor will be modeled on the one used by Apple’s Reminders appli-
cation; look at the editor there to see the general layout. Yours will differ
slightly, adding a top row containing done/cancel buttons, and providing a
fully-featured HSB color picker as opposed to Reminders’ small selection.
Creating the color picker and icon chooser is your chance to look at some
reasonably complex elements of the SwiftUI toolkit and will be extremely
useful in the future.

The layout for your editor is going to be something like the following:

1. https://pragprog.com/titles/jdswiftui/source_code

https://pragprog.com/titles/jdswiftui/source_code
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Creating Custom Controls ® 103

Cancel Done
[List Title j
| Color Wheel
~—|

Brightness Bar

OOO0OO00O0O 0O 0O

00000
00000 N

Figure 1—List Editor Layout

Predefined Colors

Icon Chooser

At the top of the editor itself are the action buttons used to commit or discard
your changes. Below that, the icon is shown in a large circle colored with the
list’s chosen color, and below that, a text field with a gray background and
rounded corners. These elements are all static within the editor.

Below the static icon and title is a ScrollView, which will contain two custom
views you’ll create. The first is a ColorPicker, which will let the user pick from
a list of predefined colors or choose their own color from a ColorWheel view,
which you’ll also create. Below the color selector will be an IconChooser that will
display a static list of icons with a circle highlighting the current selection.
In both cases, the user will interact with a view, and you’ll need to take the

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 5. Custom Views and Complex Interactions ® 104

location of their interaction to modify another view. For the icons, when the
user selects an icon, you’ll need to move the circle to surround that button
alone. In the color picker, you'll change the bound color value as the user
drags their finger around the well, and will display a large loupe view next to
their finger as it moves around. Since SwiftUI uses immutable opaque value
types for everything, the means of obtaining and using coordinates is some-
what novel but still flexible. You’ll meet the Anchor, GeometryReader, and Geome-
tryProxy types as you assemble this view, and learn to use SwiftUI's preferences
system to pass location data around between your views.

Let’s start with the color picker.

The most common interface for a color picker on Apple platforms is the HSB
wheel. This uses a circular area where all colors are laid out around the cir-
cumference, and their saturation decreases closer to the center. Alongside
this would be a slider controlling the brightness of the resulting color. These
will both make use of some custom touch handling and some coordinate
inspection, which aren’t as straightforward in SwiftUl as in an iterative
framework.

Your color picker will have several components, as shown in Figure 1, List

Editor Layout, on page 103:

¢ A color wheel displaying hue and saturation.

e A bar displaying the brightness of the selected color.

e Several buttons used to select from a list of predefined colors.

¢ An optional element to display the selected color (since this is a compo-
nent).

The intent is that the user can tap on one of the buttons to select that color,
or they can drag around in the color wheel and the brightness slider to select
a color of their own choice. The color wheel will need some means of indicating
the location of the user’s chosen color, as will the brightness bar. Additionally,
while the user is dragging on the color wheel, it should display a larger loupe
view following their finger, so they can clearly see which color they're selecting.

One immediate issue occurs: given a SwiftUI Color, how does one determine
what color it is?

Describing Colors

The Color type in SwiftUI is described as a “late-binding token.” This has a
specific meaning: it doesn’t have a concrete value until some time later,
usually when it’s about to be used. Several things may cause it to change

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Creating Custom Controls ® 105

when it comes time to render it, for example, the color space used by a par-
ticular view hierarchy, hue rotations, inversions, and of course, the various
accessibility options such as high contrast mode. By using late-binding on
all its colors, SwiftUI ensures that these options are supported by all applica-
tions—you literally cannot give SwiftUI a color that will ignore these settings.
However, this means that the Color type is opaque to those of us outside the
library, and we can’t get any useful information out of it. So, how to solve
this issue?

A partial solution already exists: TodoltemList.Color. This enumerated type con-
tains several predefined color values and one that contains separate hue,
saturation, and brightness values to represent any other colors. The color
picker you're designing needs three things from a color type:

e A means of reading and writing HSB values.
¢ A list of predefined color values to display as buttons.
e A SwiftUI Color value to use in the interface.

These requirements are all easily defined using a protocol, and one has been
provided for you in Affordances/HSBWheelHelpers.swift:

p5/Do It/Affordances/HSBWheelHelpers.swift
protocol ColorInfo: Identifiable {
static var predefined: [Self] { get }
var hsb: (Double, Double, Double) { get set }
var uiColor: SwiftUI.Color { get }
var localizedName: LocalizedStringKey { get }

}

Alongside the Colorinfo type are some helper routines to fetch a color’s individ-
ual hue, saturation, and brightness values, and an extension for TodoltemList.Color
conforming it to the new protocol. Have a look through that implementation
to see how it’s able to obtain and assign HSB values for all its predefined
colors (hint: it uses UlKit’s UlColor to do the heavy lifting).

Now you're ready to start working on the picker view itself. This view will be
generic, using as its associated value any type that conforms to Colorinfo:

p5/Do It/AccessoryViews/ColorPicker.swift
struct ColorPicker<Value: ColorInfo>: View {
@Binding var selectedColor: Value

var body: some View {
/] K L..»

}

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/Affordances/HSBWheelHelpers.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorPicker.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

O ©® N O U~ W N

o

Chapter 5. Custom Views and Complex Interactions ¢ 106

The picker has a lot of components to implement, but the simplest is the set
of selector buttons for the different predefined colors. Let’s start the view out
with that: first add the VStack that will separate the color wheel from the but-
tons, then use an HStack and a ForEach to iterate over the predefined colors,
creating a new button for each:

p5/Do It/AccessoryViews/ColorPicker.swift
VStack(spacing: 16) {

HStack {
ForEach(Value.predefined) { color in
Button(action: { self.selectedColor = color }) {
color.uiColor
}
}
.frame(maxHeight: 40)
}
}

The buttons will automatically adjust their widths to fit within the screen,
but they will eat as much height as they can get. You stop them eating too
much room by limiting their height with the .frame(maxHeight:) modifier on line
8.

Their current appearance leaves a little to be desired. The code you've written
perfectly and concisely encapsulates their intent, though, so while you can
chain on a number of modifiers to change their appearance, that would start
to clutter up this clear section of the view. In addition, it would be nice to
have a consistent look and feel for all of the components of the color picker,
but you want to avoid duplicating code everywhere. SwiftUI provides some
tools that help with this aim—one you’'ve already met, ButtonStyle, but there’s
another more broadly-applicable tool you can use here: ViewModifier.

Creating View Modifiers

Let’s say you want to have a drop shadow effect for the items in the color
picker to give them the appearance of lifting off the page a little, which will
also be useful for the loupe view in the color wheel. You can use the existing
.shadow(radius:) modifier to get a gray fading ring around your view, but for a
real 3D appearance, you'll need to adjust the offset of the shadow. For an
even better look, a common trick is to use not one but two drop shadows:
one darker, narrower, and close to the original object, and another lighter,
further out and softer. This is entirely possible, though it means two calls to
the largest of the shadow modifiers, .shadow(colorradius:x:y:). That’s a lot of
duplicated code, making it an ideal candidate for your first custom ViewModifier.

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorPicker.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

O N O U A W N

o

Creating View Modifiers ® 107

Create a new SwiftUI View file inside the AccessoryViews group and name it
ViewModifiers.swift. Remove the ViewModifiers structure completely, and replace it
with the following:

p5/Do It/AccessoryViews/ViewModifiers.swift
struct DoubleShadow: ViewModifier {
var radius: CGFloat = 10.0
func body(content: Content) -> some View {
content
.shadow(color: Color.black.opacity(0.1),
radius: radius, x: 0, y: radius * 1.2)
.shadow(color: Color.black.opacity(0.2),
radius: max(radius/10, 1), x: 0, y: 1)

}

As you can see, a ViewModifier doesn’t define a body property like a View would.
Instead, it defines a function that is passed some kind of view, and to which
it applies various other modifiers. In this case, you're taking the input view
and applying two different shadows; a wider, softer shadow on line 5, and a
narrower, darker shadow on line 7.

The modifier itself is designed to be tunable to a certain degree. On line 2 is
a radius property with a default value, and this radius is used not only as the
basis for the shadow’s radius but also for its y-offset, allowing for a wider and
softer or narrower and firmer shadow.

To see it in action, let’s add a few previews. Inside the previews property of
ViewModifiers_Previews, create a Group containing three Circle instances. Give each
one a frame of 300 by 300 and a white foreground color, then apply the Dou-
bleShadow modifier to each using the .modifier(_:) method. For the first, use Dou-
bleShadow() unchanged, and for the next two use custom radii of 20 and 6
respectively. Lastly, set the preview layout for the Group to use a fixed area of
350 by 350, to leave some room for the shadow. Your resulting code should
look something like this:

p5/Do It/AccessoryViews/ViewModifiers.swift
Group {
Circle()
.frame(width: 300, height: 300)
.foregroundColor(.white)
.modifier (DoubleShadow())

Circle()
.frame(width: 300, height: 300)
.foregroundColor(.white)
.modifier (DoubleShadow(radius: 20))

Circle()

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ViewModifiers.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ViewModifiers.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 5. Custom Views and Complex Interactions ¢ 108

.frame(width: 300, height: 300)
.foregroundColor(.white)
.modifier(DoubleShadow(radius: 6))

Text("Start Making Things")
.padding(.horizontal)
.modifier(BorderedTextField())

TextField("Title", text: sampleText)
.modifier (BorderedTextField())

}
.previewLayout(.fixed(width: 350, height: 350))

Resume the preview in the canvas and look at each in turn to see the modifier’s
effect. Try commenting out then restoring the second (narrow) shadow inside
DoubleShadow.body(content:) to see what a difference it makes.

Custom Button Styling

You've created a nice shadow effect for your buttons to use, but they're still
a bit basic—just colored squares. It'd be better if you could create a standard
appearance for these buttons and even a special interaction. The custom
shadow lends itself to an inset effect on press, for example. You'll return to
the ButtonStyle type to implement this, making a reusable component that can
be applied to all buttons in an entire view hierarchy.

Return to ColorPicker.swift. Previously you've used a PrimitiveButtonStyle to take over
handling of a button’s gesture, but here you don’t need to change the gesture
itself, you only want to style the content. ButtonStyle enables that, giving you
access to the label content and a simple isPressed property on which to operate.
Aside from the shadow and its changing radius, the appearance will be
straightforward: a circular clip shape and an overlay drawing a stroked circle
border in white. Add this to ColorPicker.swift above the ColorPicker implementation:

p5/Do It/AccessoryViews/ColorPicker.swift
fileprivate struct ColorButtonStyle: ButtonStyle {
func makeBody(configuration: Configuration) -> some View {
configuration.label
.clipShape(Circle())
.overlay(Circle().stroke().foregroundColor(.white))
.modifier (DoubleShadow(radius: configuration.isPressed ? 1 : 6))

}

You can now apply this style to all of the buttons in the picker at once by
attaching a .buttonStyle() modifier to the HStack containing the buttons:

HStack {
& ... »

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorPicker.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

>

Custom Button Styling ® 109

}
.buttonStyle(ColorButtonStyle())

The small shadow animation is currently the only effect these buttons would
appear to have since there’s no component displaying the selected color. Let’s
fix that.

Add a new boolean property to ColorPicker named showSelectionBar, with a default
value of false. Then, within the VStack and below the HStack containing the but-
tons you just created, add a simple Rectangle in the selected color with a white
border, double shadow, and some padding. Fix its maximum width and height
to 200 and 60 points respectively:

p5/Do It/AccessoryViews/ColorPicker.swift
var showSelectionBar: Bool = false

var body: some View {
VStack(spacing: 16) {
VU2 S
if showSelectionBar {
Rectangle()

.foregroundColor(selectedColor.uiColor)
.overlay(Rectangle().stroke().foregroundColor(.white))
.modifier(DoubleShadow(radius: 6))
.padding()
.frame(maxWidth: 200, maxHeight: 60)

}

Now you can create a preview and try it out. As before, use a StatefulPreviewWrap-
per to get a mutable binding to pass into the ColorPicker initializer:
p5/Do It/AccessoryViews/ColorPicker.swift
StatefulPreviewWrapper(TodoItemList.Color.blue) {

ColorPicker(selectedColor: $0, showSelectionBar: true)

}

Launch a live preview in the canvas and tap on each of the buttons. Observe
the animation of their shadows as they’re tapped and the effect that has, and
note how the content of the selection bar changes as you tap on different

buttons.

Next comes the most interesting part: the color wheel, which will require the
use of some new tools.

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorPicker.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorPicker.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 5. Custom Views and Complex Interactions ® 110

Working with Anchors

The color wheel is going to be your first entirely custom interactive control.
To assemble it, you'll need to handle and track touch input, obtain coordinates
based on that input, and feed those coordinates to other views, enabling them
to move around. The way SwiftUI does this with its immutable value types is
by necessity quite different from the inspect-and-modify approach used
elsewhere, so it's an important technique to master.

Let’s think about how the color wheel needs to function. In both of its sub-
views, it should:

e Track the user’s input from touch-down to touch-up.

¢ Directly modify the bound color value as the user’s finger moves.

e Display a small yet clear indicator of the currently selected value within
the wheel and bar.

Additionally, for the hue/saturation wheel, there is another requirement:

e Display a larger ‘loupe’ view while the user drags their finger over the
different values, changing color to indicate the current value for the user’s
finger location.

In all of these cases, this relies on being able to convert between HSB values
and coordinate locations in two separate views. To get a color, you'll need
some way of determining the location of a user’s touch, and to indicate the
current color, you need to be able to place the indicator at a particular loca-
tion.

The use of hue, saturation, and brightness allows for some relatively simple
trigonometry to convert between color components and screen coordinates.
The hue and saturation are contained in the wheel; hue is represented by the
angle from the horizontal plane, while saturation is the distance from the
center. Brightness uses a third axis, so is represented separately:

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Working with Anchors ® 111

Saturation

ssauybug

e

Figure 2—HSB Color Editor Layout

Assigning each axis a value in the range of O to 1 (also called unit space)
allows you to use normal trigonometric operations to convert from angle and
distance into coordinates and back again. The routines in Affordances/Trigonome-
try.swift provide the necessary mathematical operations for that, but still, there’s
a question of how to obtain a set of coordinates from the user’s input or how
to place something on screen at a given location. Even further, how does one
translate a location from one coordinate space to another?

SwiftUI's answer to these questions is twofold. Firstly, the GeometryReader view
provides its content with a GeometryProxy value which vends all sorts of coordi-
nate information. By wrapping a view in a GeometryReader, that view is then
able to set its width to exactly half the width of its parent or give itself a 20%
offset above its parent’s central horizontal axis. For the purposes of the color
wheel and brightness bar, the item’s size can be used to scale unit space
coordinates to locations within the GeometryReader view’s bounds, in its local
coordinates.

The GeometryProxy has several more tricks up its sleeve, however. It’s also the
arbiter for any translation of coordinates and locations between different
views and coordinate systems. The key to this is the Anchor type.

Anchor is an opaque type in SwiftUI that represents some type of coordinate
or location value. This includes points, rectangles, sizes, and the like. SwiftUI
can be asked to vend an anchor based on a given Anchor.Source type, for which

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 5. Custom Views and Complex Interactions ® 112

there are numerous static methods and properties available based on the
type of data represented. An Anchor<CGRect>.Source provides a .bounds property
and a .rect(_:) method, for example, while CGPoint-based anchor sources include
the various unit coordinates for the edges and corners of a view, along with
explicit unit points and physical coordinates. These Source values are used to
obtain anchors referencing the local coordinate space, and those anchors can
then be given to any GeometryProxy to obtain the same value in the coordinate
space of the associated GeometryReader view:

Subview Bounds

x-offset

Location
(x:75, y:35)
GeometryReader \ A?xglggryP?;;ﬁt
\ . N .
GeometryProxy

That'’s almost everything you'll need, except for one wrinkle: passing the Anchor
value around your view hierarchy. For this, think back to Indirect, upwards,

carrying information from a subview up to its ancestors. In fact, SwiftUI's
tools for obtaining and working with anchors are tied directly into the prefer-
ence system: you obtain an anchor using the .anchorPreference(key:value:transform:)
view modifier. This modifier takes a reference to a PreferenceKey type, an
Anchor.Source, and a block used to transform the requested anchor into the
value type associated with the preference key.

On top of that, there are several view modifiers that work directly with prefer-
ence values to generate other views: .backgroundPreferenceValue(_:transform:) will use
the current value of a preference to generate a background view, while .over-
layPreferenceValue(_:transform:) will let you create an overlay view in the same way.
An overlay preference is, in fact, exactly what you need to create the loupe
view and have it track the user’s finger as it moves.

You now have all of the pieces of the puzzle laid out. All that remains is to
assemble them.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Creating and Using Gradients ® 113

Creating and Using Gradients

The two core views of the color picker together use all three types of gradient
provided by SwiftUI: linear, angular, and radial. Each has a different
appearance, and each has a different role to play in the view.

First, create a new SwiftUI View in the AccessoryViews group and name it Color-
Wheel.swift. The color wheel will be generic, using the same Colorinfo type defined
in HSBWheelHelpers.swift. It will bind to a value and will maintain two items of
state for its own use: a boolean used to keep track of whether the user is
currently dragging around the loupe and the location of the loupe within this
view. The body will start out with an HStack to contain the wheel and the
brightness bar, with a little space between them. Inside that will live the
GeometryReader that you'll use to drive the wheel’s interaction model.

p5/Do It/AccessoryViews/ColorWheel.swift
struct ColorWheel<Value: ColorInfo>: View {
@Binding var color: Value

@State private var dragging = false
@State private var loupelLocation: CGPoint = .zero

var body: some View {
HStack(spacing: 16) {
GeometryReader { proxy in
V2 4

}

}

The wheel itself consists of two different gradients layered on top of one
another. The hue is represented by an angular gradient, which will change
colors based on the angle. The saturation will be implemented by a semitrans-
parent radial gradient fading from white to clear the further it gets from the
center of the view. Both will need to read the current brightness value from
the bound color to obtain the correct appearance.

In both cases, the underlying gradient is defined using the Gradient type, which
encapsulates the various colors that make up the gradient along with their
positions in unit space (i.e., between O and 1). This Gradient is then used to
initialize an AngularGradient or RadialGradient, which will handle the details of
mapping the colors into place within a view. The approach will be similar for
the brightness bar, which will use a LinearGradient to map the changes across
a single axis.

Start by adding a private property to ColorWheel implementing the hue gradient:

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 5. Custom Views and Complex Interactions ® 114

p5/Do It/AccessoryViews/ColorWheel.swift
private var wheelGradient: AngularGradient {
let (, , b) = color.hsb
let stops: [Gradient.Stop] = stride(from: 0.0, through: 1.0, by: 0.01).map {
Gradient.Stop(color: Color(hue: $0, saturation: 1, brightness: b),
location: CGFloat($0))
}
let gradient = Gradient(stops: stops)
return AngularGradient(gradient: gradient, center: .center,
angle: .degrees(360))
}

Here, you've assigned hue values between O and 1 to gradient stops in the
same range, using the stride(from:through:by:) method to generate 100 separate
stops. At each stop, the hue is set to the stop location, the saturation is always
1, and for the brightness, you use the value from the currently selected color,
i.e., the value from the brightness bar. The AngularGradient then uses that and
rotates it 360° around the center of its enclosing view. The high number of
gradient stops is an important requirement because the display itself uses
RGB values. Each HSB value supplied to the gradient is going to be converted
to RGB, then each component of the resulting RGB value will be interpolated
to generate the intermediate colors of the gradient. This means that you’ll see
more errors appear in the wheel as the number of stops is reduced.

For saturation, the RadialGradient similarly uses a defined center point but
requires a specific radius over which to change its value. You’ll thus need to
define a function to which you’ll pass the required radius. The underlying
Gradient, in this case, uses the current selection’s brightness as before, but
has a static hue and saturation of zero (zero saturation is white), and fades
that color’s opacity to zero over its range:

p5/Do It/AccessoryViews/ColorWheel.swift
private func fadeGradient(radius: CGFloat) -> RadialGradient {
let (, , b) = color.hsb
let fadeColor = Color(hue: 0, saturation: 0, brightness: b)
let gradient = Gradient(colors: [fadeColor, fadeColor.opacity(0)])
return RadialGradient(gradient: gradient, center: .center,
startRadius: 0, endRadius: radius)

}

With these done, you can create the wheel itself. Since you'll place an indicator
on top of this view to highlight the currently selected color, place it in a ZStack.
Then clip it into a circle shape and draw a white outline:

p5/Do It/AccessoryViews/ColorWheel.swift
ZStack {
self.wheelGradient

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Creating and Using Gradients ® 115

.overlay(self.fadeGradient(radius: proxy.size.width/2))
.clipShape(Circle())
.overlay(Circle().stroke(Color.white))

}

You'll also need to fix the aspect ratio of the GeometryReader you're using to
contain the wheel so that the coordinate space being used for the gradients
and the later interactions all fit into the square region bounding the circle.
Along with that, you'll add the double-shadow effect to the wheel as well.
Inside the body implementation, attach the following to the end of the Geome-
tryReader:

p5/Do It/AccessoryViews/ColorWheel.swift
GeometryReader { proxy in
/)KL L. »

}
.aspectRatio(contentMode: .fit)
.modifier (DoubleShadow())

Without this, the GeometryReader will take all the vertical space it’s offered, and
the gradient will look rather strange.

To see what you've created so far, add the following implementation to Color-
Wheel_Previews.previews and refresh the canvas:

p5/Do It/AccessoryViews/ColorWheel.swift
StatefulPreviewWrapper(TodoItemList.Color.purple) { binding in
VStack {
ColorWheel(color: binding)
}
}

Try commenting out the .aspectRatio(contentMode:) modifier you added to the
GeometryReader—what happens to the gradients? Now revisit the wheelGradient
property and adjust the value of the by: parameter to the stride() function, and
see how the gradient changes as the number of color stops is reduced.

Location Calculations

The next step is to look at the current color and determine where on the color
wheel that color is located. For this purpose, let’s use a simple 16x16 rectan-
gle, filled with the selected color and given a white outline. Adding that to the
ZStack directly will place it at the center of the wheel; to move it into the correct
location, you'll use the .offset(_:) view modifier, passing in the offset calculated
using the view’s size. The size itself is available directly from the GeometryProxy;
add this to the body implementation, just after the wheelGradient view:

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

Chapter 5. Custom Views and Complex Interactions ® 116

p5/Do It/AccessoryViews/ColorWheel.swift
if !self.dragging {
Rectangle()

.fill(self.color.uiColor)
.overlay(Rectangle().stroke(Color.white, lineWidth: 1))
.frame(width: 16, height: 16)
.offset(HSB.unit0Offset(for: self.color, within: proxy.size))

}

Note that this is only going to be placed onscreen if the user isn’t dragging
the loupe around to make a selection; when that happens, this small indicator
will be replaced by the larger loupe view.

Try changing the color value passed into the StatefulPreviewWrapper view in your
preview provider—the color wheel will update to highlight the new value. In
some cases, you'll see the brightness of the wheel change as well: green and
purple both have a lower brightness value than the other predefined colors.

To make your wheel interactive, youw’ll need some way of setting a color value
based on some location within the wheel. With the size of the wheel obtained
from your GeometryProxy, it’s quite straightforward to determine a unit location
within those bounds and use that to update your color:

p5/Do It/AccessoryViews/ColorWheel.swift

private func assignColor(at location: CGPoint, in geometry: GeometryProxy) {
let unitLocation = location.centeredUnit(within: geometry.size)
HSB.updateColor(&color, at: unitlLocation)

}

Responding to User Input

You can now generate colors from the coordinates of a user’s actions; it
remains only to enable interaction. A DragGesture, the same you used for the
buttons in Raising Button Priority, on page 33, will give you what you need.

The Value type for a drag gesture provides all the required information and
more, though you only need the location property in this case. Attach this call
to the .gesture() modifier to the end of the ZStack declaration containing the
color wheel’s gradient:

p5/Do It/AccessoryViews/ColorWheel.swift
.gesture(
DragGesture(minimumDistance: 0).onChanged {
self.dragging = true
self.loupeLocation = $0.location
.boundedInCircle(radius: proxy.size.width/2)
self.assignColor(at: self.loupeLocation, in: proxy)
}

.onEnded { _in

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Passing Data with View Preferences ¢ 117

self.dragging = false
self.assignColor(at: self.loupeLocation, in: proxy)

)

Here, you've provided both .onChanged() and .onEnded() callbacks. You turn on
the dragging property when the gesture’s value changes on line 3, then turn it
off when the gesture ends (line 9). Along with any change to the gesture, you
read the new location and assign it to your loupelocation property; note, however,
that the coordinate gets clipped to the bounds of the circle, so that even if
the user’s finger leaves the area of the view, the location used to determine
the color (and place the loupe) will remain within the wheel itself.

To see the effect in action in a live preview, you’ll need to add another view
to your preview that displays the currently selected color. Add the following
to ColorWheel_Previews.previews, immediately following the ColorWheel:

p5/Do It/AccessoryViews/ColorWheel.swift
RoundedRectangle(cornerRadius: 12)
.fill(binding.wrappedValue.uiColor)
.overlay(RoundedRectangle(cornerRadius: 12)
.stroke(Color.white))
.frame(width: 300, height: 60)
.modifier (DoubleShadow())
.padding(.top)
.zIndex(-1)

Now launch a live preview in the canvas and click and drag around the color
wheel; the new feedback view at the bottom of the preview should change
color as you move the mouse cursor.

Passing Data with View Preferences

Reacting to user input by toggling a boolean or changing a data value is all
very well, but an interactive Ul should be, well, interactive. It should be pos-
sible to adjust and move your views around based on a user’s input. In this
section, you'll learn to use the facilities SwiftUI provides for passing around
coordinates, translating them, and applying them to your views in real-time.

To create a loupe view that moves around following the user’s input, you’ll
need to create a PreferenceKey to carry anchor information. The anchor will be
created using the location of the user’s finger within the circle view, then
resolved by the GeometryProxy to a coordinate within the GeometryReader view’s
bounds.

The first step is to create a preference key. To conform to the Preferencekey
protocol, a type needs to define three things:

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 5. Custom Views and Complex Interactions ® 118

¢ A Value type.

¢ A default value, as a static property.

e A static function named reduce(value:nextValue:), to combine multiple values
from across the view tree.

The reduce() function provides the core part of the preference system in SwiftUI.
While environment values are passed down the view tree to ever-larger num-
bers of descendants, preference resolve upwards toward a single ancestor.
That means that differing values from two branches of the view hierarchy
must be resolved somehow into a single value ready to be presented to a
single ancestor.

As an example, consider an OptionSet type such as UlinterfaceOrientationMask from
UIKit:

public struct UIInterfaceOrientationMask : OptionSet {
public init(rawValue: UInt)
public static var portrait: UIInterfaceOrientationMask { get }
public static var landscapelLeft: UIInterfaceOrientationMask { get }
public static var landscapeRight: UIInterfaceOrientationMask { get }
public static var portraitUpsideDown: UIInterfaceOrientationMask { get }
public static var landscape: UIInterfaceOrientationMask { get }
public static var all: UIInterfaceOrientationMask { get }
public static var allButUpsideDown: UIInterfaceOrientationMask { get }

}

There are several different values available, and these may be combined—for
instance, .landscape is the same as [.landscapeLeft, .landscapeRight]. This type is ideal
for resolution through the preference system. Suppose subviews were able
to declare their orientation support as a preference. One descendant supports
all resolutions, while another supports everything except .portraitUpsideDown.
The reduce() function could be implemented to return the smallest supported
set of values, like so:

public static func reduce(value: inout UIInterfaceOrientationMask,
nextValue: () -> UIInterfaceOrientationMask) {
// use the most restrictive set from the stack
value.formIntersection(nextValue())

}

This would cause the parent view to receive a value of .allButUpsideDown:

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Passing Data with View Preferences ® 119

.allButUpsideDown

T

| reduce()
/ \

.allButUpsideDown .all

Now consider a new subview added further down the tree, which only supports
portrait orientations. This value would be reduced along with its parent’s,
causing a narrower set of allowed orientations to flow up the tree to the root

view:
.portrait
i
| reduce() |
AN
.portrait .all
Y
t
.portrait
Tracking the Loupe

It’s time to create your preference key. Add the following to the top of Color-
Wheel.swift, above the ColorWheel definition:

p5/Do It/AccessoryViews/ColorWheel.swift
tinel fileprivate struct LoupeLocationPreferenceKey: PreferenceKey {
typealias Value = Anchor<CGPoint>?
static var defaultValue: Anchor<CGPoint>? = nil
static func reduce(
5 value: inout Anchor<CGPoint>?,
nextValue: () -> Anchor<CGPoint>?
) {
if value == nil {
- value = nextValue()
10 }

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

-}

Line 1
2
3
4

Chapter 5. Custom Views and Complex Interactions ® 120

On line 2 you've identified the associated value type as an Anchor<CGPoint>?—an
optional anchor that resolves to a single coordinate location. The default value
is nil, defined on line 3. The reduce() function is more interesting. Its two argu-
ments are designed to be as economical as possible with memory. Instead of
returning a new instance of some object of potentially large size, the current
value is passed using the inout keyword, meaning it can be assigned or modified
directly and in-place, avoiding costly allocations and copies. Similarly, the
second argument is a block that will create/copy and return the incoming
value only when requested. In the implementation you just wrote, you don’t
access the nextValue block at all unless the current value is nil—as on line 8.

With the preference key designed, you now need to generate an anchor value
to assign to it. SwiftUI provides the .anchorPreference(key:value:transform:) view
modifier for this purpose. Its first argument takes the type of Preferencekey
being used. The second takes an Anchor.Source of some kind, to request a con-
crete Anchor instance. The last parameter is a block to which that anchor will
be provided, and which should return the Value type of the associated Prefer-
enceKey.

In your case, you want an anchor for a single point: the value of the loupelLocation
property. The value type of your LoupePreferenceKey is already an Anchor, so you
won't need to do anything special in your transform block—just return the
anchor as-is.

To create and assign the anchor, add the following to ColorStack.body immediately
following the .gesture()() modifier:

p5/Do It/AccessoryViews/ColorWheel.swift

.anchorPreference(key: LoupeLocationPreferenceKey.self,
value: .point(self.loupelLocation),
transform: { $0 })

The loupe view will be added to the view hierarchy via the .overlayPreferenceVal-
ue(_:transform:), which can be attached to any ancestor of the ZStack to which
you attached the .anchorPreference() modifier—even the same view. For the pur-
poses of illustration, let’s attach it to the GeometryReader surrounding the wheel
view, immediately following the aspect ratio and double shadow modifiers:

p5/Do It/AccessoryViews/ColorWheel.swift
.overlayPreferenceValue(LoupeLocationPreferenceKey.self) { anchor in
GeometryReader { geometry in
self.buildLoupe(geometry, anchor)
.opacity(self.dragging ? 1 : 0)

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

-}

Passing Data with View Preferences ® 121

}

Here, you've specified the LoupelocationPreferenceKey as the preference to use,
you've provided a block that will transform the preference’s value—an
Anchor<CGPoint>—into a View to be set as the overlay for the wheel. To obtain
coordinates from the anchor, you use another GeometryReader view on line 2.
You then pass the anchor and the provided GeometryProxy into a new method
to create the loupe view itself, then use its opacity to display it only while the
user is actively dragging their finger on the view.

The call to a separate buildLoupe() function is necessary here due to the nature
of the ViewBuilder block passed to the GeometryReader initializer. To determine the
correct offset for the loupe, you'll need to calculate a couple of values. A view
builder block, unfortunately, doesn’t allow for that—only statements that
evaluate to View types, along with some basic if/else branches, are allowed. By
moving that code to a separate function you regain the ability to use let
statements.

The loupe view itself will be a circle 70 points in diameter, filled with the
selected color, with a 1-point-wide white outline and a double shadow. It will
be put into place using the .offset(x:y:) view modifier. Add this function to Color-
Wheel following the body implementation:

p5/Do It/AccessoryViews/ColorWheel.swift
private func buildLoupe(
_ geometry: GeometryProxy,
_ anchor: Anchor<CGPoint>?
) -> some View {
let location = anchor != nil ? geometry[anchor!] : .zero
let unitLocation = location.centeredUnit(within: geometry.size)

return Circle()
.fill(HSB.uiColor(at: unitLocation, basedOn: color))
.overlay(Circle().stroke(Color.white, linewWidth: 1))
.frame(width: 70, height: 70)
.modifier(DoubleShadow())
.offset(x: location.x - 35, y: location.y - 35)

Two locations are used here, both ultimately obtained through the anchor
you've passed up through your LoupelocationPreferenceKey. On line 5 you obtain
the true screen coordinates for the anchor in the coordinate system of the
overlay view. This is used on line 13 to move the loupe into the right location
within its superview. The second location, defined on line 6 is in unit coordi-

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

Chapter 5. Custom Views and Complex Interactions ® 122

nates measured from the center of the wheel, and is used on line 9 to calculate
the fill color for the loupe.

The hue/saturation wheel is now complete—fire up a live preview in the
canvas and try it out. You'll see the loupe appear and follow your gesture
around the wheel, its color changing all the time to match the value beneath
it. When you let go, the smaller indicator will reappear in the same location.

Adjusting Brightness

So far, you can select a color based on its hue and saturation values alone.
To handle brightness, you need to add a new interactive view to the side of
the color wheel, showing the various shades of brightness available for the
current color, as shown in Figure 2, HSB Color Editor Layout, on page 111.
The brightness bar will operate in a very similar manner to the color wheel.
It will use a Gradient to fill an area with the chosen color at different levels of
brightness, and it will use a small outlined Rectangle to indicate the currently-
chosen brightness value. This will similarly use a ZStack to present the selection

indicator on top of the gradient.

Your brightness bar is going to be used only along with the ColorWheel, so it
can be defined as a fileprivate type within ColorWheel.swift. Add the following
skeleton implementation to that file, just after the definition of LoupelocationPref-
erencekKey:

p5/Do It/AccessoryViews/ColorWheel.swift
fileprivate struct BrightnessBar<Value: ColorInfo>: View {
@Binding var color: Value

var body: some View {
GeometryReader { proxy in
ZStack(alignment: .top) {
/] K L..0»

}

-}

The color value from the color wheel is passed on to the bar as a binding, and
on line 5 you have the GeometryReader you’ll use to interpret the location of the
user’s drag gesture within the range of brightness values represented.

Let’s put the bar in the preview while you build it. First, give the bar some
temporary content; add a color fill inside its body:

var body: some View {
GeometryReader { proxy in

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

oA W

Passing Data with View Preferences ¢ 123

Color.blue

}

Now, scroll down to the body implementation of your ColorWheel view and add
a reference to the brightness bar following the GeometryReader there, at the end
of the HStack content:

p5/Do It/AccessoryViews/ColorWheel.swift

BrightnessBar(color: self.$color)
.padding(.vertical, 30)
.frame(maxWidth: 30)
.modifier (DoubleShadow())
.zIndex(-1)

Note here the .zIndex(-1) modifier on line 5; this causes the bar to be placed
lower in the view order than the wheel and (crucially) the loupe. Try removing
this line and dragging the loupe towards the brightness bar to see why that’s
desirable!

Refresh the preview in the canvas. The bar is stretching to fill the entire height
of the device’s screen, which isn’t ideal. Really you want it to be of a similar
height as the color wheel—a little less, in fact, since the color wheel is the
primary element of this view. The reason it’s growing is because its parent
view, the HStack, is growing. There are a number of ways to prevent that, such
as using a .frame() modifier on the stack view to set or limit its height. However,
that seems a little overzealous—the wheel view shouldn’t limit its size, its
parent view should be able to adjust its size appropriately. Instead, set an
aspect ratio, limiting the height based on its width (and vice versa). A little
testing found that an aspect ratio of 1.125 worked best; apply this modifier
after the closing brace of the HStack view:

p5/Do It/AccessoryViews/ColorWheel.swift
var body: some View {
HStack(spacing: 16) {
/] K L. »

}
.aspectRatio(1.125, contentMode: .fit)

}
That looks better. Now return to BrightnessBar to add some useful properties.

First, you'll need a gradient for the current color, with its brightness ranging
from 1 at the top to 0 at the bottom. This is straightforward to implement;
read the hue and saturation from the the color property and create a Color
instance for each end of your gradient:

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 5. Custom Views and Complex Interactions ® 124

p5/Do It/AccessoryViews/ColorWheel.swift
var gradient: Gradient {
let (h, s,) = color.hsb
return Gradient(colors: [
Color(hue: h, saturation: s, brightness: 1),
Color(hue: h, saturation: s, brightness: 0)
1)
}

Next, you'll need to be able to translate between a brightness value and a
coordinate on the bar’s y-axis. This is straightforward to implement using the
brightness property on Colorinfo (see Affordances/HSBWheelHelpers.swift for the imple-
mentation):

p5/Do It/AccessoryViews/ColorWheel.swift
func selectionOffset(proxy: GeometryProxy) -> CGSize {
CGSize(width: 0,
height: CGFloat(l.0-color.brightness) * proxy.size.height - 5)
}

You now have everything you need to draw the bar and implement the drag
gesture. Add a LinearGradient inside the body’s ZStack, and give it a white border
with the .border() modifier:

p5/Do It/AccessoryViews/ColorWheel.swift
LinearGradient(gradient: self.gradient,
startPoint: .top,
endPoint: .bottom)
.border(Color.white)

Below that, add the location indicator: use the current color and give it a
border, fix its height, and set its offset based on the current color’s brightness
value:

p5/Do It/AccessoryViews/ColorWheel.swift
self.color.uiColor
.border(Color.white)
.frame(height: 10)
.offset(self.selection0ffset(proxy))

The final step is to add the DragGesture that will enable your users to adjust
the brightness of their chosen color. No .onEnded() block is needed this
time—just set the color selection as the drag’s location changes:

p5/Do It/AccessoryViews/ColorWheel.swift
ZStack(alignment: .top) {
VYR B
}
.gesture(DragGesture(minimumDistance: 0).onChanged {
let value = 1.0 - Double($0.location.y / proxy.size.height)

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ColorWheel.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Building a Single-Choice Control ® 125

self.color.brightness = min(max(0.0, value), 1.0)
1)

Fire up the live preview and try it out. As you make adjustments on both the
wheel and the bar, every view’s content alters in real-time to reflect your
changes.

Finalizing the Color Picker

Adding the wheel to the color picker is now a simple matter; open ColorPicker.swift
and place it at the top of that view’s VStack like so:

VStack(spacing: 16) {
ColorWheel(color: $selectedColor)

« ...»
}

Refresh the preview in your canvas and start a live preview running. The
wheel works as before, this time updating the contents of the optional selection
bar at the bottom of the view. Clicking the buttons for the predefined colors
also immediately changes both that and the status of the color wheel and
brightness bar. Note how the selection indicators in both move around as
you switch between the predefined colors.

That’s the first major element of the list editor complete, with only one more
to go: the icon chooser. That won’t be as long, I promise.

Building a Single-Choice Control

Radio buttons—a set of buttons of which only one may be selected at any
time—is an interesting challenge in SwiftUI. While the Picker type is the usual
way of implementing this concept on iOS, it doesn’t have any representations
that are ideal for selecting between a list of purely-visual icons. Instead, you’ll
create your own, using the same tools that you've used elsewhere in this
chapter to quickly assemble a working radio-button group with a clear visual
design.

Glance back at Figure 1, List Editor Layout, on page 103 and look at the "icon
chooser” section. It consists of several rows of circular items, each of which
will represent a single icon. All of the icons are going to be members of the
SF Symbols set provided by Apple, presented in five rows of five. The full list
of icons you’ll support is defined in Resources/list-icons.json, and to display them,
you need little more than a pair of ForEach views to iterate over the two-

dimensional array.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

Line 1

Chapter 5. Custom Views and Complex Interactions ® 126

Start by creating a new SwiftUI View in the AccessoryViews group, naming it
IconChooser.swift. Give your new view a binding to a String property named
selectedicon, and implement its body using the aforementioned pair of ForEach
views iterating over a global property named listiconChoices. Place the outermost
ForEach within a VStack, and the innermost within an HStack, with a Button for
each icon. The button should set the selectedicon value when pressed, and its
content should be an Image displaying that icon. Lastly, give both stacks a
spacing of 14 points. The resulting code should look something like this:
p5/Do It/AccessoryViews/IconChooser.swift

struct IconChooser: View {
@Binding var selectedIcon: String

var body: some View {
VStack(spacing: 14) {
ForEach(listIconChoices, id: \.self) { rowData in
HStack(spacing: 14) {
ForEach(rowData, id: \.self) { icon in
Button(action: { self.selectedIcon = icon }) {
Image(systemName: icon)

}

}

Now, set up the preview using a real binding in the same manner you've used
before, start a live preview, and try it out:

p5/Do It/AccessoryViews/IconChooser.swift
StatefulPreviewWrapper("list.bullet") {
IconChooser(selectedIcon: $0)

}

The buttons aren’t looking particularly special right now; they're all just
accent-colored icons bunched together in the center of the screen, each row
a different size, dimming slightly when tapped. Let’s change that by creating
a new ButtonStyle to apply to them all.

Inside the IconChooser structure, just above the body implementation, add a new
private type named IconChoiceButtonStyle, and implement its makeBody(configuration:)
method to give the icons a circular background, a large font, and a scale-up
effect when they're pressed:

p5/Do It/AccessoryViews/IconChooser.swift
private struct IconChoiceButtonStyle: ButtonStyle {
func makeBody(configuration: Configuration) -> some View {

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/IconChooser.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/IconChooser.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/IconChooser.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

-}

Building a Single-Choice Control ® 127

configuration.label
.font(.system(size: 24, weight: .bold, design: .rounded))
.padding(6)
.frame(width: 30)
.padding(14)
.background(Color(UIColor.tertiarySystemFill))
.clipShape(Circle())
.scaleEffect(configuration.isPressed ? 1.2 : 1)

- var body: some View {

-}

VStack(spacing: 14) {
V720 S

}
.buttonStyle(IconChoiceButtonStyle())

The background color on line 8 is one that hasn’t been mentioned before. The
UlColor type from UIKit makes available the same predefined colors as SwiftUI's
Color type, but UlColor also vends a quite large number of semantic colors, named
for the purpose they’re intended to fulfil. By using these values, you can
obtain the standard system look and feel, and your application will change
to match if these colors are redefined in future OS updates. The colors will
also differ appropriately when used in dark mode vs. light mode, or when the
user has selected a high-contrast color scheme. SwiftUI doesn’t export all of
these as yet, but it’s possible to initialize a SwiftUI Color with a UlColor, so you
don’t have to go without. Here, you've used the tertiary system fill; there are
actually four fill colors defined, with each being a little lighter and less
obtrusive than the last. The UlColor documentation describes their intended
uses, and tertiarySystemfill is described as the color to use for “input fields,
search bars, and buttons.” These are buttons, so that’s the color to use.

Try out the buttons in a live preview. They now stand apart from one another
in a well-defined grid, and the bounds of each button are clearly delineated
by their background. It would look nicer, though, if the currently-selected
icon were highlighted in some fashion. Looking at the list editor from Apple’s
Reminders application (which you're emulating here), there’s a darker ring
around the currently selected icon. Let’s do the same here.

At first, though, it seems as though this could be added directly to the Button
itself, drawing an overlay or border if that button is selected. Doing so would
likely adjust the size of each button, however, making it a little more involved
to arrange them nicely. A better approach would be to display the highlight
in an overlay or background layer for the entire view, moving the content to

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 5. Custom Views and Complex Interactions ® 128

place it behind the selected icon. You've already seen the tools for implement-
ing this; yes, this is a job for Anchor and PreferenceKey once more.

Dealing with Multiple Preference Values

Preference values in SwiftUI are designed for collection and reduction, com-
bining multiple inputs into a single output. This icon chooser makes use of
this facility by having every button add its information to a single array, with
that array being used to obtain coordinates for a particular item to highlight
it.

Each button will publish the anchor for its bounds, and then you’ll use that
to adjust the background view’s location with the aid of a GeometryProxy. How-
ever, here you have 25 subviews publishing values into the preference system,
so the “first non-nil value” reduction approach used for the color wheel won’t
work here. Additionally, there needs to be some way to correlate the selected
icon name with the location of one particular button. This means that the
preference key type will need to be a little more involved.

The approach you’ll take is twofold: first, you’ll define a structure to serve as
the preference key’s Value type. This will contain an anchor for the button’s
bounding rectangle along with the icon name associated with that button.
The preference key will then use an array of these types as its Value, and it
will reduce values by merging together all the values into a single array. When
it comes time to create the background using the final preference data, the
array can be searched to locate the anchor associated with the selectedicon
property value.

First, create the value and preference key types inside the IconChooser type,
above the definition of IconChoiceButtonStyle:

p5/Do It/AccessoryViews/IconChooser.swift
private struct IconSelectionInfo {
let name: String
let anchor: Anchor<CGRect>

}

private struct IconChoice: PreferenceKey {
typealias Value = [IconSelectionInfo]
static var defaultValue: Value = []
static func reduce(value: inout [IconSelectionInfo],
nextValue: () -> [IconSelectionInfo]) {
value.append(contentsOf: nextValue())

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/IconChooser.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Yvy

YYVYVYY

Line 1

Dealing with Multiple Preference Values ¢ 129

Each button can now publish its anchor by using the .anchorPreference(key:val-
ue:transform:) view modifier:

p5/Do It/AccessoryViews/IconChooser.swift

Button(action: { self.selectedIcon = icon }) {
Image(systemName: icon)

}

.anchorPreference(key: IconChoice.self, value: .bounds) {
[IconSelectionInfo(name: icon, anchor: $0)]

}

The value of .bounds is an anchor source that is used to request an anchor
describing the bounding rectangle of the view to which it’s attached. Use it
to create a circle view as the background of the outermost VStack using .back-
groundPreferenceValue(_:transform:):

p5/Do It/AccessoryViews/IconChooser.swift
var body: some View {
VStack(spacing: 14) {
VIS S
}
.buttonStyle(IconChoiceButtonStyle())
.backgroundPreferenceValue(IconChoice.self) { values in
GeometryReader { proxy in
self.selectionCircle(for: values, in: proxy)

}
}

The calculations for laying out the selection circle require variables, as the
color wheel’s loupe view did earlier. The circle itself is again set up in a sepa-
rate function.:

p5/Do It/AccessoryViews/IconChooser.swift
private func selectionCircle(
for prefs: [IconSelectionInfo],
in proxy: GeometryProxy
) -> some View {
let p = prefs.first { $0.name == selectedIcon }
let bounds = p != nil ? proxy[p!.anchor] : .zero

return Circle()
.stroke(lineWidth: 3)
.foregroundColor (Color(UIColor.separator))
.frame(width: bounds.size.width + 12,
height: bounds.size.height + 12)
.fixedSize()
.offset(x: bounds.minX - 6, y: bounds.minY - 6)

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/IconChooser.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/IconChooser.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/IconChooser.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 5. Custom Views and Complex Interactions ¢ 130

On line 5 you search through the array of preference values to locate the one
associated with the chosen icon. With that you’re able to pass it into the
GeometryProxy to obtain a CGRect with local coordinates matching that item’s
anchor. The resulting view is a circle with a frame set on line 11 to extend an
extra six points outside the bounds of the button it surrounds on all sides.
The .fixedSize() view modifier provides a hint to SwiftUI’s layout engine that this
view’s size should be considered absolute. The offset from the anchor’s
bounding rectangle is used to position the circle within the view. Note the
presence of another semantic color definition on line 10; this time, you're
using the color defined for separators and thin lines, which seems appropriate
in this case. Like the fill for the buttons, this is a semitransparent color that
will work on top of most backgrounds.

Run the live preview again, and you'll see the final effect as the selection circle
jumps around when you select each button. Its size matches the scale effect
on the buttons so that it lines up with the increased size of the button as it
moves; I think that’s a nice effect, no?

Composing the Final Interface

It's been a long journey, but the end is in sight: now it’s time to assemble all
of these components into a single cohesive whole—the list editor.

Start by creating a new SwiftUI View, and name it TodoListEditor.swift. Give the
new view the two properties it will need to do its job: the TodoList to operate
on, and the DataCenter used to save the changes:

p5/Do It/TodoListEditor.swift
@EnvironmentObject var data: DataCenter
@State var list: TodoItemList

The list's structure, as outlined in Figure 1, List Editor Layout, on page 103,
consists of five components:

¢ A titlebar with cancel/done buttons to either side.
¢ A large display of the list’s selected icon.

e A text field to edit the list’s name.

e The color picker you created earlier.

e The icon chooser.

The last two components are placed inside a scroll view since otherwise, the
entire Ul wouldn't fit on the screen; the top three items will stay in place while
the color picker and icon chooser scroll beneath. If you think this looks like
a job for a VStack, you’d be right. Start by laying out the structure of the view’s
body:

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/TodoListEditor.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Composing the Final Interface ® 131

p5/Do It/TodoListEditor.swift
var body: some View {
VStack {
// < Top bar: cancel, title, done »

// « List icon »
// « Text field »

VStack(spacing: 0) {
Divider()
ScrollView {
// &« Color picker »
// <« Icon chooser »

}

Let’s start at the top and work downwards.

Top Bar Layout

You've seen this particular item before when designing the todo item editor
in Building an Editor, on page 66. This bar is a simple HStack containing a

title and two buttons, separated by spacers:

p5/Do It/TodoListEditor.swift
HStack(alignment: .firstTextBaseline) {
Button("Cancel") {
// & dismiss sheet »
}
Spacer()
Text ("Name & Appearance")
.bold()
Spacer()
Button(action: {
// « save data, dismiss sheet »

A
Text("Done")
.bold()
}
}
.padding()

These buttons need to be able to do two things: the “Done” button has to save
the data to the store in the DataCenter, and both buttons need to dismiss the
editor sheet. Saving the data consists of locating the matching list within the
DataCenter and setting it to the value of the modified list property from the editor.
That’s also something you've done before, and it’s a straightforward matter
to create a private function in TodoListEditor to implement it:

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/TodoListEditor.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/TodoListEditor.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 5. Custom Views and Complex Interactions ® 132

p5/Do It/TodoListEditor.swift
private func saveData() {
if let idx = data.todoLists.firstIndex(where: { $0.id == list.id }) {
data.todoLists[idx] = list
}
}

When showing the TodoltemEditor (see Presentation, on page 76) you implemented
the cancel/done buttons as part of thepresentmgTodoltemDetaH view, so the
buttons simply toggled the same property used to present the sheet. Here
you're implementing everything from the context of the presented view, so
you can’t take that route. You could use a binding to some showEditor to enable
the same approach, but SwiftUI already has your back, in the form of the

PresentationMode type.

PresentationMode is a simple struct type that SwiftUI places into the environment.
It provides two things:

e A boolean property, isPresented, which indicates whether the current view
or one of its ancestors was presented in some reversible manner.

¢ A function, dismiss(), which will dismiss the topmost presented view if there
is one. If isPresented is false, then the dismiss() function has no effect.

This presentation mode is wired up by SwiftUI both when a sheet is presented
via the .sheet() and when a new view is pushed onto a navigation stack through
a NavigationLink, and is able to dismiss both types of view. To access it, you use
an @Environment attribute to fetch the presentationMode property from the environ-
ment:

p5/Do It/TodoListEditor.swift
@Environment (\.presentationMode) var presentation

The value of that property is a Binding<PresentationMode>, so you’ll access its
contents via the binding's wrappedValue property, as described in Property
Wrappers, on page 58.

This is the last piece you’ll need to implement your buttons’ actions. The
“Cancel” button will call dismiss() to close the editor; the “Done” button will
save the changes before doing the same:

p5/Do It/TodoListEditor.swift

Button("Cancel") {
self.presentation.wrappedValue.dismiss()

}

Spacer()

Text("Name & Appearance")
.bold()

Spacer()

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/TodoListEditor.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/TodoListEditor.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/TodoListEditor.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

vy

Composing the Final Interface ® 133

Button(action: {
self.saveData()
self.presentation.wrappedValue.dismiss()
1A
Text("Done")
.bold()
}

Large Scale Iconography

Next up is the list icon. Since it's going to be quite large, let’'s add a subtle
gradient to the background color to give it a little texture, so it won’t seem as
flat. You’'ll darken the list’s color a little by reducing its brightness to about
70% of its current value, then fade from the original color to the darker variant
across the bounds of the icon’s background. To make it a little more organic,
the gradient will happen at a slight angle, running from the top-left unit point
to the bottom-center. Lastly, the familiar double-shadow effect will help lift
it from the background.

First, add a new property to TodoListEditor to return a LinearGradient:

p5/Do It/TodolListEditor.swift

var iconGradient: LinearGradient {
var (h, s, b) = list.color.hsb
b *= 0.7

return LinearGradient (

gradient: Gradient(colors: [
list.color.uiColor,
Color(hue: h, saturation: s, brightness: b)

1),

startPoint: .toplLeading,

endPoint: .bottom)

}

With the gradient defined, you can display the icon using a regular Image view.
Increase the icon’s size using a .font() modifier to specify a 56-point size and
to draw the icon in a bold, rounded format. Locking a 1:1 aspect ratio, a little
padding, and an explicit size round out the appearance you're looking for:

p5/Do It/TodoListEditor.swift
Image(systemName: list.icon)
.font(.system(size: 56, weight: .bold, design: .rounded))
.aspectRatio(contentMode: .fit)
.padding(36)
.foregroundColor(.white)
.frame(width: 112, height: 112)
.background(iconGradient)
.clipShape(Circle())
.modifier (DoubleShadow())

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/TodoListEditor.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/TodoListEditor.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

Chapter 5. Custom Views and Complex Interactions ® 134

Custom Text Field Appearance

Next comes the text field. By default, a Textfield view appears as plain text on
an empty background. It can alternatively be given a rounded border using
a style modifier and the RoundedBorderTextFieldStyle type, but that doesn’t quite
match the desired appearance. Sadly, though SwiftUI provides a TextFieldStyle
protocol, its details are all internal, so you can’t take the same approach for
the text field that you have used for buttons so far. This design seems like it
might be more generally useful, though, so instead, let’s create a new ViewMod-
ifier to style the field.

Open AccessoryViews/ViewModifiers.swift and add the following definition below the
DoubleShadow type.

p5/Do It/AccessoryViews/ViewModifiers.swift
struct BorderedTextField: ViewModifier {
func body(content: Content) -> some View {
content
.multilineTextAlignment(.center)
.padding(.vertical, 12)
.background(
RoundedRectangle(cornerRadius: 10, style: .continuous)
.foregroundColor(Color (UIColor.tertiarySystemFill))

-}

This modifier applies a few different effects to its view. Firstly, any text it
contains is centered within the view’s bounds using the .multilineTextAlignment(_:)
modifier on line 4. This, like most other text-affecting modifiers, actually
places its value into the environment, so its effect will cascade down the view
stack.

The background applied to the view is the familiar RoundedRectangle, but on line
7 an additional argument, style, is being used to describe the type of rounding
to perform on the corners. If not specified, corners are given a circular
appearance—the curve of the corner is a quarter-circle. Here you've specified
.continuous, which specifies the use of the same mathematical bezier curve
corners used on icons and other types through iOS since version 7. When
using rounded corners on larger views, the continuous arc will generally look
better, but on smaller corners, the difference is less obvious, so use the default
circular corners there.

Lastly, the fill color for the background set on line 8 is the same tertiarySystemFill
you used in the icon chooser above.

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ViewModifiers.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

YYVYY

Composing the Final Interface ® 135

Update ViewModifier_Previews to display a couple of different uses of this modifier:

p5/Do It/AccessoryViews/ViewModifiers.swift

static var sampleText: String = "Sample Text"

static var sampleText: Binding<String> = Binding(
get: { sampleText }, set: { sampleText = $0 })

static var previews: some View {
Group {
// & shadow previews »
Text("Start Making Things")
.padding(.horizontal)
.modifier(BorderedTextField())

TextField("Title", text: sampleText)
.modifier (BorderedTextField())

}
.previewLayout(.fixed(width: 350, height: 350))

}

This code uses an alternate approach to providing a working Binding value for
the text field—you can define a static variable on your preview provider to
hold the value, then define a Binding property directly that accesses that vari-
able. Refresh the preview in the canvas to see the effect on a regular Text view
and a TextField; note that the text field uses all available width since its content
isn’t fixed and may grow when edited.

Now, return to TodoListEditor.swift and add the name field, giving it a 20-point
semibold, rounded font, with a little padding around the outside:

p5/Do It/TodoListEditor.swift

TextField("List Title", text: $list.name)
.font(.system(size: 20, weight: .semibold, design: .rounded))
.modifier(BorderedTextField())
.padding()

Only one task remains to complete the list editor. Add the color picker and
icon chooser views within the ScrollView, binding them to the list’s color and icon
properties respectively. Note that the color picker will not turn on the
optional selection view since the icon display at the top of the editor will serve
that purpose nicely.

p5/Do It/TodolListEditor.swift
ScrollView {
ColorPicker(selectedColor: $list.color)
.padding()
IconChooser(selectedIcon: $list.icon)
.padding()

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/AccessoryViews/ViewModifiers.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/TodoListEditor.swift
http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/TodoListEditor.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

YYVYY

Chapter 5. Custom Views and Complex Interactions ¢ 136

Finally, add a preview, not forgetting the DataCenter in the environment:

p5/Do It/TodoListEditor.swift
ScrollView {
ColorPicker(selectedColor: $list.color)
.padding()
IconChooser(selectedIcon: $list.icon)
.padding()
}

Refresh the canvas and launch a live preview. Try interacting with all the
controls and observe the changes that occur, all in real-time, as you make
the changes. Sit back and admire your handiwork—it’s been a long road, but
you've made it.

Name & Appearance

Self-Improvement

report erratum -

discuss

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/TodoListEditor.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

What you Learned ® 137

Presenting the Editor

One final task remains. At present, there is nothing in the application that
will display the editor you've just assembled. Let’s add an “Info” button to the
navigation bar of the todo list view and have that present the editor in a sheet.
Open TodolList.swift and make these changes:

p5/Do It/TodoList.swift
Linel @State private var showingListEditor: Bool = false

- private var barItems: some View {
HStack(spacing: 14) {
5 if self.list != nil {
Button(action: { self.showingListEditor.toggle() }) {
Image(systemName: "info.circle")
.imageScale(.large)

- .font(.system(size: 24, weight: .bold))
10 }

- }

sortButton
}

- var body: some View {
List(sortedItems) { item in

/] K L..0»
- }
20 V2R S
.navigationBarItems(trailing: barItems)
/] K L..0»

.sheet(isPresented: $showinglListEditor) {
TodoListEditor(list: self.list!)
25 .environmentObject(self.data)

-}
This adds a property to control the display of the sheet and replaces the
trailing items on the navigation bar with a new HStack containing the two

buttons. It's important to note, however, the check on line 5: you can’t show
an editor for the “All Items” view.

Build and run your application and try everything out.

What you Learned

In this chapter, you've moved far beyond the basic Ul tools of text and back-
ground colors and have learned to use the declarative, reactive tools provided
by SwiftUI to create a complex and interactive interface.

http://media.pragprog.com/titles/jdswiftui/code/p5/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 5. Custom Views and Complex Interactions ¢ 138

* You added a good understanding of padding, backgrounds, and clipping
shapes to your SwiftUI arsenal.

* You learned to look at your compositions with a critical eye for visual
balance and attention to detail.

e You've seen how the use of some additional font properties can give your
application a sense of identity.

e SwiftUI provides some simple tools that scale easily to implement much
more complex systems, and you've seen how to use several of these in a
few different ways.

The Xcode canvas is an incredibly useful tool for debugging layout issues. In
the next chapter you’'ll learn some tips & tricks for putting it to best use as
you implement support for dynamic type, localization, and right-to-left layouts.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

CHAPTER 6

Making the Most of the Canvas

Story Map

Why do I want to read this?
The Xcode canvas provides a handy and flexible way of previewing your
content under a wide variety of situations, and as such, is a useful proto-
typing and verification tool.

What will I learn?
You'll learn how to configure your previews to check your layouts on dif-
ferent devices and in different locales, including right-to-left layout. You’'ll
see how you can quickly and easily view your application’s views in light
and dark presentation modes, and how it will render based on the user’s
preferred text scaling.

What will I be able to do that I couldn’t do before?
You will have a veritable tool-belt of useful preview functionality at your
beck and call, and you'll be able to quickly check, diagnose, and fix layout
issues under a variety of real-world situations, even while prototyping
your Ul

Where are we going next, and how does this fit in?
It's time to move to a larger canvas. The next chapter will bring the
application to iPadOS and look at implementing support for the various
features unique to that platform.

You have now assembled a working application with numerous components.
At this point, you might start using the application to test it under various
different conditions. Any localization work would begin, and you’d need to
run through everything in your application to ensure correctly localized and
translated data appears. That’s potentially a lot of work, but happily the Xcode
canvas provides facilities that will help a lot in that regard. The canvas is an

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 6. Making the Most of the Canvas ¢ 140

important tool in application development with SwiftUI; not only does it provide
visual editing capabilities and immediate updates for prototyping, but it can
provide customized displays so you can evaluate multiple outputs at design
time. It has a number of tricks up its sleeve, which you’ll put to good use in
this chapter.

Handling Size and Appearance

When you build an application for iOS, there are several classes of devices it
can run on. In size alone, you have one size for the iPhone SE, one for each
of the iPhones 8S and 8S Plus, then more for the iPhone X, XS, the iPhone
11, and iPhone 11 Pro Max. In addition to these, the user can select their
desired text size from very small to quite large, which will have a further effect
on your app’s layout. With the advent of the font-based SF Symbols for icon
images in iOS 13, even standard iconography will scale with a user’s chosen
text size.

Alongside these sizing and layout concerns, iOS 13 brings dark mode support,
offering a white-on-black alternative color scheme. This can directly affect
some of your choices. Hard-coding your text to be a darkish gray? In dark
mode, it'll be difficult to see against a now-black view background. Manually
setting your background to white? Users who favor dark mode won’t be happy
that your app doesn’t conform.

Virtually all the work in this chapter will occur inside of the preview views
placed at the bottom of each of the .swift files containing your views. Let’s start
with the detail view.

Open TodoltemDetail.swift and scroll down to reveal the TodoltemDetail_Previews
structure at the bottom of the file. This type operates in a similar manner to
a View, but instead of returning a view from a body property, it uses the previews
property. The content, however, is much the same, with the exception of a
few extra methods that only affect the Xcode preview display.

The first thing you’ll notice about the detail view on the canvas is that, unlike
in the real app, there’s no title bar or back button. This is expected, given
that the preview is showing only this single view; however, it would be more
useful to see it in context with the navigation bar displayed. To start, wrap
the existing TodoltemDetail() call in the previewsproperty in a NavigationView, like so:

static var previews: some View {
NavigationView {
TodoItemDetail(item: todoItems[0])
}

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Handling Size and Appearance *® 141

Click Resume, if necessary, to update the preview in the canvas, and you’ll
see... well, not a lot of difference, to be honest. The header view is tall, has
content aligned at the bottom, and is stretching to the very top of the screen,
so the navigation bar is fully transparent. Furthermore, it doesn’t have any
content, so there’s really nothing to see. Let’s add something there for now.

Add an imitation “Back” button by appending the following modifier to the
TodoltemDetail instance you just created:

TodoItemDetail(item: todoItems[0])
.navigationBarItems(leading: self.backButton)

Add a new property to the preview provider to implement the button:

static var backButton: some View {
Button(action: {}) {
HStack(spacing: 4) {
Image(systemName: "chevron.left")
.imageScale(.large)
.font(.headline)
Text("To-Do Items")

}

Now your view appears much as it does when you run the app in the simula-
tor:

< To-Do ltems

Complete SwiftUl book

sample
Priority: High Aug 3, 2019

Use parts of the initial setup tutorial, to
demonstrate how | plan to introduce and explain
new code.

The blue coloring of the header extends up behind the navigation bar,
adjusting its appearance slightly to match the rest of the content. Switch your
preview to use one of the other to-do items to see what it looks like with other
colors.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 6. Making the Most of the Canvas ® 142

Using Multiple Previews

The Xcode canvas is quite flexible. One of its more useful features is the
ability to display more than a single preview at a time, whether showing dif-
ferent data or presenting in different contexts or layouts.

Within and Without

You might want to compare the appearance of the view both when presented
within a navigation stack or without. Previews enable such things via (among
others) the Group view. Not so much a view in itself as an ordering mechanism,
a Group view will simply render its contents within the group’s enclosing view.
In the case of previews, a top-level Group will cause each of its subviews to
render as a separate preview.

To see your detail view with and without the navigation bar, use the following
code to generate a pair of previews:

static var previews: some View {
Group {
NavigationView {
TodoItemDetail(item: todoItems[0])

}
TodoItemDetail (item: todoItems[0])

}

Now you have two previews on the canvas, and you’ll note that the second
one doesn’t show the navigation—since there’s no navigation view, there’s no
bar.

Multiple Items

Having multiple previews for a single view can help in other ways, too. You
can quickly and easily see how several different to-do items will render in the
detail view. Try it out:

Group {
TodoItemDetail (item: todoItems[0])
TodoItemDetail(item: todoItems[1])
TodoItemDetail(item: todoItems[2])
}

You could wrap each of those in a NavigationView to see a navigation bar, but
that quickly becomes unwieldy—as does an increasing number of items.
Happily, the ForEach view comes in handy here.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Supporting Dark Mode and Light Mode © 143

ForEach operates in a manner similar to a list, in that it generates content using
a block and a sequence of items. Where List creates an actual list view, how-
ever, ForEach simply creates multiple subviews and passes them all up to its
enclosing view. That can be a list view itself (this is helpful if your list contains
multiple types of row views, for example), or if it’s a PreviewProvider, then each
subview will be rendered as its own preview. To see this in action, replace the
Group-based preview property with the following ForEach-based version:

p3/Do It/TodoltemDetail.swift
ForEach(todoItems) { item in
TodoItemDetail(item: item)

}

Supporting Dark Mode and Light Mode

i0S 13 brings dark mode to iOS for the first time. This provides a white-on-
black color scheme, lighting up less of the display, and using a more muted
set of standard colors. Many users will expect your app to look good in dark
mode, so it’s worthwhile to have the canvas show the different appearances.

SwiftUI provides the .colorScheme() modifier for views, allowing them to override
the system setting. You can use this in previews to explicitly turn on dark
mode:

NavigationView {
TodoItemDetail(item: todoItems[0Q])
}

.colorScheme(.dark)

In the following image, note that the blue background of the header view
changes slightly:

< To-Do ltems

Complete SwiftUl book

sample
Priority: High Aug 3, 2019

Use parts of the initial seJ{8]eR{sj{eIgL-IMRe}
demonstrate how | plan [{eRigjifele[V[el=¥-sle RNTS] Elg!
new code.

It becomes softer, a little lighter, and less vibrant so that it doesn’t make such
a stark contrast against the black background of the text below. Since the

http://media.pragprog.com/titles/jdswiftui/code/p3/Do It/TodoItemDetail.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 6. Making the Most of the Canvas ® 144

Todoltem.Color type uses SwiftUI's preset colors, this happens automatically: all
the system colors have variants for both light and dark mode.

Right now, there are two color schemes defined in the ColorScheme enumeration:
Jight and .dark. Since ColorScheme conforms to the Caselterable protocol, it provides
an allCases static property that you can use to enumerate the available values
in a ForEach view. Use the following code to generate a preview for each color
scheme available, including any additional ones you might encounter in the
future:

p3/Do It/TodoltemDetail.swift
ForEach(ColorScheme.allCases, id: \.self) { scheme in
NavigationView {
TodoItemDetail (item: todoItems[0])
}

.colorScheme(scheme)
.previewDisplayName(String(describing: scheme))

}

Here, you're iterating across all of the available schemes, using their enumer-
ation value as an identifier, then setting that color scheme on the NavigationView
using the .colorScheme() modifier.

Using Device Previews

The Xcode canvas can also display several different devices, which will help
you to quickly discover any layout problems that might arise on the smaller
screen of an iPhone SE, for example. For this purpose, SwiftUI provides a
number of view modifiers specific to showing previews in the canvas:

e .previewLayout(value: PreviewLayout) enables you to define the size and shape of
the preview’s container (you saw this before on page 25).

e _previewDevice(value: PreV|ewDeV|ce?)letsyouspemfyapartlcular iOS, watchOS,
or tvOS device to simulate; this is the default, with a device chosen based
on the active Xcode build scheme.

¢ previewDisplayName(value: String?) allows you to customize the name displayed
below the preview on the canvas. This can be quite helpful when showing

multiple previews.

To show multiple devices, you'll use the .previewDevice() modifier. Its argument,
an instance of PreviewDevice, can be constructed using the standard (or ‘mar-
keting’) name of the device in question using the PreviewDevice(rawValue: String)
initializer. Handily, that value is also useful as a name for the preview,
meaning that it’s quite straightforward to generate multi-device previews:

http://media.pragprog.com/titles/jdswiftui/code/p3/Do It/TodoItemDetail.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Supporting Dynamic Type ¢ 145

p3/Do It/TodoltemDetail.swift
ForEach(["iPhone 11", "iPhone SE"], id: \.self) { name in
TodoItemDetail(item: todoItems[0])
.previewDevice(PreviewDevice(rawValue: name))
.previewDisplayName (name)

}

Supporting Dynamic Type

One way a user can customize the Ul on their iOS devices is by changing the
dynamic type size of text throughout all apps that correctly support it, as
recommended by Apple. SwiftUI has just about everything you need for this
task already implemented, so your app already supports dynamic type sizes.
This leaves you with another task, though: you need to make sure that your
application will behave correctly at different type sizes. Previews in the Xcode
canvas make this once onerous task relatively simple and straightforward.

By now, you can probably guess how this preview will be implemented. The
ContentSizeCategory enumeration is used to specify the size class to use, and it
conforms to Caselterable, so it has an allCases static property which can be enu-
merated using a ForEach view. To actually set the size class to use, you specify
it using the SwiftUI environment, with the \.sizeCategory key. You can use a
description of the category as the preview name since there are a lot of possible
values.

p3/Do It/TodoltemDetail.swift
ForEach(ContentSizeCategory.allCases, id: \.self) { category in
TodoItemDetail(item: todoItems[0])
.environment(\.sizeCategory, category)
.previewDisplayName(String(describing: category))

}

The results are quite illustrative. A single-line title on the smallest setting
makes the header look far too big:

< To-Do ltems

Feed the cat

Priority: Normal No Due Date

Don't forget her medicine.

Meanwhile, a double-line title on the largest non-accessibility setting looks
like it's squeezing up against the navigation bar somewhat:

http://media.pragprog.com/titles/jdswiftui/code/p3/Do It/TodoItemDetail.swift
http://media.pragprog.com/titles/jdswiftui/code/p3/Do It/TodoItemDetail.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 6. Making the Most of the Canvas ® 146

< To-Do ltems

Complete SwiftUl book
sample

Priority: High Aug 3, 2019

Use parts of the initial setup tutorial, to
demonstrate how | plan to introduce and
explain new code.

Once you get to the accessibility-related size, though, things just get
unbearable:

< To-Do ltems

Priority:... Aug 3,...

Use parts of the

initial eAatiin
None of this is ideal. While the very largest accessibility size likely requires
some special handling, the non-accessibility issues all come down to one
thing: the header has a fixed 200-point height, defined by the rectangle:

Rectangle()
.fill(item.color.uiColor)
.frame(height: 210)
.overlay(TitleOverlay(item: item))

This code defines an area of 210 points in height and then lays the text and
gradient on top of it. A better solution is to let the text content determine the
size, and have the color and gradient match.

The opposite of the .overlay() modifier is .background(). In both cases, the view
provided to the modifier is forcibly sized to match the one to which the modi-
fier is applied. So far, you've taken a fixed-size rectangle and applied the text
to it. Now that the text is growing and shrinking, the rectangle should follow
suit, and swapping the order of the views will fix that.

Take the code from the TitleOverlay view and move it into the appropriate places
in the TodoltemDetail view:

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

YYYVYYY

>

Supporting Dynamic Type ¢ 147

1. Move the properties gradient and formatter to become properties of
TodoltemDetail.

2. Take the content of TitleOverlaybody, and put it into TodoltemDetail.body,
replacing the Rectangle() view and its modifiers.

3. Attach a .background() modifier to the VStack you just moved, filling it with a
Rectangle, filled with the item’s color, and with an overlay using the gradient
property.

The code inside the top-level VStack of TodoltemDetail.body should now look
something like this:

p3/Do It/TodoltemDetail.swift
VStack(alignment: .leading, spacing: 8) {
Text(verbatim: item.title)
.font(.title)
.bold()
.layoutPriority(1)

// & .. more .. »
}
.foregroundColor(.white)
.padding()
.padding(.top)
.background (ZStack {

Rectangle()
.fill(item.list.color.uiColor)
.overlay(gradient)
.edgesIgnoringSafeArea(.top)

1)
if item.notes !'= nil {
Text(verbatim: self.item.notes!)

.padding()

}
Spacer()

Refresh the previews in the canvas, and you’ll see that the header is now
growing along with the size of the text, preventing it from pushing up into the
top of the screen—success!

There’s one last thing you can do here, though. With short notes content such
as you're currently using it isn’t obvious until you scroll down to look at the
accessibilityExtraExtraExtralarge variant. There, you’ll see that the notes no longer
fit on the screen, and in fact, are truncated. To resolve this, you can use a
ScrollView, either around the text field containing the notes:

if item.notes != nil {
ScrollView(.vertical) {
Text(self.item.notes!)

http://media.pragprog.com/titles/jdswiftui/code/p3/Do It/TodoItemDetail.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

>

vy

Chapter 6. Making the Most of the Canvas ® 148

.padding()

}

...or around the entire view, taking care to move out the .navigationBarTitle()
modifier to now sit on the scroll view:

var body: some View {
ScrollView(.vertical) {
VStack(alignment: .leading) {
« ... content ... »

}
}

.navigationBarTitle("", displayMode: .inline)

}

However, note that a scroll view, by definition, clips its contents. This means
that the .edgeslgnoringSafeArea() modifier on the header background won’t appear
behind the navigation bar if you put the scroll view around the whole thing.
If you go with the first option, however, and wrap only the notes, you'll likely
notice a slight problem appear in the header at large type sizes:

Complete
SwiftUl book

sample
Priority:... Aug 3,...

This is an artifact of SwiftUI's layout system. To understand why this happens
and how to fix it, you need to look at SwiftUI's layout model.

Understanding SwiftUl’s Layout System

When SwiftUI looks to lay out a container’s subviews, it follows a relatively
simple process for each axis:

1. Create an initial budget for each subview by dividing the full amount of
space equally.

2. Ask each view in turn how much space it needs, passing in its budget as
an upper limit.

report erratum - discuss

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Understanding SwiftUl's Layout System ® 149

3. Iftheview doesn’t use its full budget, the remaining amount is apportioned
equally amongst the remaining views.

Let’s look at these steps in some more detail.

SwiftUI first determines the amount available space, then it partitions that
space equally between all of the available subviews, as shown here:

} Available Width i

- % th 2 ft 2 :

[VStack (Text) j < Spacer >

Figure 3—Basic Width Apportionment

The layout engine then looks at the kinds of subviews it’s dealing with, sepa-
rating them into two groups: fixed views are those whose sizes are defined
either explicitly—by the .frame() modifier—or implicitly with an intrinsic size—for
instance the bounds of an image. Flexible views are those that do not meet
this criteria.

SwiftUI then takes each of the fixed views and informs them of their allotted
space. In this example, the circle view will be offered one-third of the available
width, and all of the height; the circle will reply, thanks to the explicit frame,
that it requires only 18x18 plus some padding, taking somewhat less than
what was offered. Once all of the fixed views have chosen their sizes, SwiftUI
re-assesses the amount of space available for the flexible views to use and
again apportions that equally between them. This results in the following
prospective layout:

k Available Width > l=— Consumed —{
|

b= 2 Ya

[VStack (Text)] < Spacer >

Figure 4—Fixed Widths

The layout engine hands the assigned size to each view, in turn, in layout
order (leading vs. trailing, top-down vs. bottom-up, depending on the contain-
ing view’s alignment settings), and each view will determine how much of that
size it will use. If it uses less than that offered, then any remainder is divided
among the remaining views, leaving the layout seen here:

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 6. Making the Most of the Canvas ¢ 150

f Available Width > t«~— Consumed —{
t=—— Fit to Content 1 Remaining Space —— M8 M =

[VStack (Text)] < Spacer >

Figure 5—Variable Widths

For the header view you're working on in this chapter, the text is bumping
up against the height constraint of the view. The title, priority, and date Text
views all need to wrap their content onto at least a second line. The layout
system notices that there isn’t quite enough room for their ideal dimensions,
so it gives precedence to the title, allowing it to expand. The priority and date
fields are then forced by the height constraint to truncate themselves to a
single line.

A similar thing used to happen in the first released versions of SwiftUI, where
a Spacer view would always take all the proffered space, rather than shrinking
to allow other views to grow. Thus a Text, Spacer, and Text in an HStack would
end up using one third of the available width each. Apple resolved this by
making implicit what here you’ll have to make explicit: that one view’s layout
is more important than the other. For this, you use layout priorities.

In SwiftUI, all views have a layout priority, represented as a floating-point
value. By default, this value is zero for everything, meaning all views are
treated equally (it seems Spacer is a special case). When these values are not
equal, the layout system takes an extra pass, grouping subviews by their
priorities in descending order. Then, within each group, it will perform the
fixed vs. flexible layout steps outlined above to apportion space, then take
anything remaining on to the next-highest priority views, as shown in Figure

which is always respected—for instance, a Text view will not normally disappear
completely: it will instead specify a minimum large enough to display a single
ellipsis (...) character.

f Available Width > t=— Consumed —{

I High Priority: takes 90% of offer 1 e 10% oy

[VStack (Text)]

Figure 6—Explicit Priorities

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Previewing Localizations ® 151

In the current case, the ScrollView is accepting all the vertical space it's been
offered (50% of the total), and the header view is left without enough room to
display all its content. The use of named text types (headline, title, etc.) has
allowed the layout system to prioritize the three-line title over the other text
areas, but still, there’s not quite enough room.

The solution to this is as simple as adding a new .layoutPriority() modifier to the
header view, to raise its priority above that of the scroll view:

VStack(alignment: .leading, spacing: 8) {
Text(item.title) {
« ... content ... »
}
.foregroundColor(.white)
.padding()
.padding(.top)
.background(« ... »)
.layoutPriority(1)
« ... »

}

Now the header renders in an expected manner:

Complete
SwiftUl book

sample

Priority: Aug 3,
High 2019

With this step complete, let’s look at how the canvas can help us preview and
verify some other text-related changes: localization.

Previewing Localizations

Ideally, your application will support multiple locales and languages. The
Xcode canvas offers an easy way to quickly preview how your localizations
are shaping up, that translated text is appearing where it should, and to
ensure your layout works for every language you support.

report erratum - discuss

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 6. Making the Most of the Canvas ® 152

To use the next few examples, you need to add the localization files from the
sample project to your own. You'll find them in code/p3/Do It/Resources/, where
you’ll see three folders: ar.Iproj, en.lproj, and pl.lproj. These contain Arabic, English,
and Polish versions of the Localizable.strings file containing translated versions
of various words supplied by the app.

One of the localizations, Arabic, has been chosen explicitly to exercise one
particular aspect of application localization: right-to-left layout. You may have
noticed that alignments are named ‘leading’ and ‘trailing’ rather than ‘left’ or
‘right.’ This is because, in a right-to-left locale, the leading edge will be on the
right side of the screen, and the trailing edge to the left. You'll use these three
localizations in your next canvas update.

There are two parts to set related to your localization. The first part is the
locale, the information around the language, and the common formats used
for things like decimal points, currencies, times, and dates. The second part
is the layout direction, either left-to-right or right-to-left. Given a list of locales
and their corresponding layout directions, you can easily use a ForEach view
to generate a preview using each localization and layout.

The values are passed into the preview’s views using the SwiftUI environment.
The .environment(_:_:) view modifier is what you’ll use to pass in modified versions.
This modifier takes two arguments. The first is a key-path expression, such
as \.locale, used to identify which value to set. The second is an instance of the
appropriate type for that value. For a locale, you use \.locale and an instance
of Locale. For the layout direction, the parameters are \.layoutDirection and a case

of the LayoutDirection enumeration—either .leftToRight or .rightToLeft.

That gives you the pieces you need. Now put them together, creating an array
of Locale-direction pairs to iterate over, then set the relevant environment
variables on the NavigationView:

p3/Do It/TodoltemDetail.swift

let localePairs: [(Locale, LayoutDirection)] = [
(Locale(identifier: "en-US"), .leftToRight),
(Locale(identifier: "pl"), .leftToRight),
(Locale(identifier: "ar"), .rightToLeft),

]

return ForEach(localePairs, id: \.self.0) { value in
TodoItemDetail (item: todoItems[0])
.environment(\.locale, value.0)
.environment (\.layoutDirection, value.1l)
.previewDisplayName(value.0.languageCode ?? value.0.identifier)

http://media.pragprog.com/titles/jdswiftui/code/p3/Do It/TodoItemDetail.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Previewing Localizations ® 153

Now, the actual titles and notes from the to-do items won’t be translated, but
the back button title, the date, and the priority labels will be. Additionally,
the Arabic locale will be laid out right-to-left, with any English text being
written left-to-right but right-aligned. However, two errors immediately leap
out:

ples <

Complete SwiftUl book

sample

Y\a/eA[oY High :4Lasél

The back button has been translated, but it appears on the left-to-right
leading edge for some reason, and its chevron is pointing left—but in a right-
to-left context, it should be pointing right.

The second error is that the priority hasn’t been translated: it still reads
“High,” even though a translation was provided.

Happily, the first issue is a glitch with the previews and doesn’t affect the real
application. You can verify this by switching to TodoList.swift and applying the
locale and layout direction environment changes to switch it to Arabic, then
running live preview. Navigate into an item, and the back label correctly
appears on the right side of the screen:

ples D

Complete SwiftUl book

sample

Localizing String Variables

The label is produced by the following code from TodoltemDetail.TitleOverlay.body
in TodoltemDetail.swift:

Text("Priority: ") + Text(item.priority.rawValue.capitalized).bold()

The “Priority:” is being translated, so why not the other Text view’s content?
Neither is using the Text(verbatim:) initializer, so shouldn’t this be translated
automatically?

You can find the answer by looking at the initializers available on the Text
structure:

report erratum « discuss

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 6. Making the Most of the Canvas ¢ 154

(1) public init(verbatim content: String)
© public init<S>(_ content: S) where S : StringProtocol

©® public init(_ key: LocalizedStringKey, tableName: String?
bundle: Bundle? = nil, comment: StaticString?

nit,
nil)

© This is the verbatim-text initializer, which does nothing special with its
input.

© Here’s the string-type initializer, which will accept values of type String or
String.Substring. Note that only those two types conform to StringProtocol; the
StaticString type used to represent text such as "this" in the code specifically
does not conform to that protocol. Static inline strings will therefore not
be matched against this initializer.

© This initializer has no argument label and takes an input of type Localized-
Stringkey. Looking at that class, it conforms to ExpressibleByStringLiteral (via
ExpressibleByStringInterpolation), so the use of an inline string argument without
the verbatim: label will cause this initializer to be selected.

Looking at the arguments used when creating the Text views for the priority
display, you’ll see that the first Text instance is given a static string, so that
will match the LocalizableStringKey initializer. The second takes a plain String,
though, which will match against the StringProtocol initializer. Aha, that seems
to be the issue then.

Test the hypothesis by modifying the code to create a new LocalizedStringKey
from the priority string and use that to initialize the Text view:

p3/Do It/TodoltemDetail.swift
Text("Priority: ") +
Text(LocalizedStringKey(item.priority.rawValue.capitalized)).bold()

Click Resume on your canvas, if necessary, and note that the priority names
are now correctly translated.

Localizing the List

While we're looking at localization data, it would be useful to interact with
the application in Live Preview mode to check that everything is working
properly. For this, you should start at the List view.

Open TodoList.swift and scroll down to the TodoList Previews structure. Add the
Arabic locale and right-to-left layout to the preview’s TodoList:

p3/Do It/TodoList.swift
TodoList()
.environment(\.locale, Locale(identifier: "ar"))

http://media.pragprog.com/titles/jdswiftui/code/p3/Do It/TodoItemDetail.swift
http://media.pragprog.com/titles/jdswiftui/code/p3/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Previewing Localizations ® 155

.environment(\.layoutDirection, .rightTolLeft)

Click Resume in the Xcode canvas, if necessary, to get the preview updated,
and you’ll immediately see the effects of the right-to-left layout.

plee

Book flights and hotel room for Burning
Cat
Why haven't | done this already?

Buy food for Friday night

Choose cover image ()

The rows are set out correctly, with their contents’ left-to-right ordering
reversed. The color dot and arrow are on the left; the title and notes are on
the right. The list’s title is also displayed on the right.

Click the Play button at the bottom of the preview to enter Live Preview mode
and select one of the rows. You'll see the detail view slide in from the left
(which is now the trailing edge), and the content, including the back button
you worked on earlier, all appears as expected. Click the back button to return
to the list (note that the navigation bar’s leading and trailing edges are now
correct) and click on the Sort icon that’s now at the top left of the list.

Argh, another problem! The title of the alert is translated properly, but the
button titles aren’t. The Localized.strings file definitely contains translations for
these buttons, so what’s causing this to go wrong here?

Scroll up in the editor toward the declaration for the ActionSheet and you’ll see
a familiar sight: the button titles are created using Text(opt.rawValue). As you
saw earlier, this formulation is going to call the StringProtocol initializer for the
Text view, so the solution here is the same: initialize a LocalizedStringkey from
the option value, like so:

p3/Do It/TodoList.swift
ActionSheet.Button.default(Text(LocalizedStringKey (opt.rawValue))) {
self.sortBy = opt

http://media.pragprog.com/titles/jdswiftui/code/p3/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 6. Making the Most of the Canvas ® 156

}

Update your live preview and try the sort button again. This time all the
options should be correctly translated. The same should apply if you switch
to the Polish localization as well.

The last place that needs some localization love is the TodoListChooser. Here the
navigation bar title is correctly translated, but the “All Items” row title is not.
The Row instance is initialized with a static string, though:

p3/Do It/TodoListChooser.swift
NavigationLink(destination: TodoList()) {
Row(name: "All Items",
icon: "list.bullet",
color: .gray)

}

Scrolling down to the Row implementation, the lack of translation becomes
clear: the name property has type String, so when it’s passed into the Text initial-
izer it won’t be localized. There are several ways you can handle this, but the
most straightforward for now is also the simplest: wrap the value passed into
the Text initializer in LocalizedStringKey(), like so:

p3/Do It/TodoListChooser.swift
var body: some View {
HStack {

Image(systemName: icon)
.foregroundColor(.white)
.frame(width: 32, height: 32)
.background(color)
.clipShape(Circle())

Text(LocalizedStringKey (name))

}

With that in place, the “All Items” name will be correctly translated.

What You Learned

A lot of user interface debugging and testing takes place only by running the
application and trying to get it to enter all the available states, one by one.
The Xcode canvas helps out here by providing a quick and easy way to produce
the same effects right next to the editor with a minimum of effort. As you've
seen, it makes it easy to notice errors that you might not normally encounter
at this stage of your application, and similarly easy to fix them.

Now you have the know-how to put the Xcode canvas to good use, ensuring
your application’s quality right from the word go. With this knowledge in

http://media.pragprog.com/titles/jdswiftui/code/p3/Do It/TodoListChooser.swift
http://media.pragprog.com/titles/jdswiftui/code/p3/Do It/TodoListChooser.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

What You Learned ® 157

hand, it’s time to move to a larger application canvas. In the next chapter
you'll bring the app to iPadOS and look at implementing support for the
unique capabilities of that platform.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

CHAPTER 7

SwiftUl on iPadQS

Story Map

Why do I want to read this?
The iPad has a number of differences from the iPhone these days, beyond
simply providing a larger canvas to work upon. Popovers, multiple win-
dows, and support for keyboards and now even pointing devices. These
all offer challenges to integrate successfully with SwiftUI.

What will I learn?
How to take your existing SwiftUI app and bring it to the iPad. You'll
analyze the resulting UI and make some changes specific to each platform
to make the app feel more at home on those devices. You'll learn to
implement support for multiple windows and keyboard shortcuts, and
provide pointer support in your UL

What will I be able to do that I couldn’t do before?
You’'ll know how the basic Ul elements provided by SwiftUI adjust for
different platforms, and you’ll be able to provide system-specific variants
of your UI while re-using as much of your existing UI code as possible.
You'll also be able to wire in more features to the distinctly UIKit-based
scene and window management APIs.

Where are we going next, and how does this fit in?
The iPad has supported drag & drop for a couple of versions now. It’'s a
large topic with many nuances, so the next chapter will attempt to explore
it thoroughly.

In 2019, at the same time SwiftUI was announced to the world, iOS was split
in two. The iPad was growing more capable in each release, and the list of
iPad-specific features was growing, as a result, the iPad operating system
was officially renamed iPadOS. This signaled a distinct change to Apple’s

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 7. SwiftUl on iPadOS ¢ 160

approach to the device, and in early 2020 iPadOS 13.4 gained some function-
ality that would bring it closer in use to a laptop running macOS. Now your
device could pair with and use wireless keyboards, mice, and trackpads—and
the support for these would be absolutely first-class—neither an attempt to
shoe-horn the macOS pointer onto a Ul designed for fingers, nor a simple set
of additional ways to do the same thing Ed: That sentence is a lot to unpack; consider
revisingit.. Like the windowing and scene systems announced in 2019, the iPad
re-thought the purpose of a pointing device and adapted it precisely to the
system.

In this chapter you’'ll take the application and see how to make use of iPad-
specific features such as pointer support, multiple windows, drag and drop,
and scene management. Some of these facilities have more support in SwiftUI
than others, so you'll see how to put together the components described in
iterative APIs with those in the declarative format of SwiftUI.

A certain amount of the content of this chapter deals with system-level
capabilities that fall outside the purview of SwiftUI itself. The starter project
for this chapter implements a lot of the work for you, such as implementing
NSltemProvider types, UNUserNotification integration, and support for undo and redo
via NSUndoManager. Rather than dive into the details of these subjects, you'll
focus only on how to make use of them in SwiftUI code.

Introducing iPadOS

First things first: select the project in the Project Navigator, then select the
“Do It” target, and finally the General tab. Under “Deployment Info,” ensure
that the target is set to “iOS 13.4,” and that “iPad” is selected. Now launch
the application on an iPad or iPad simulator. Ed:Ratherthan use quotes for the Ul elements,
please use the keyword tag. You'll have to update not only this chapter but all of the chapters. You can do

this on your revision pass.

The first thing you’ll notice is that the NavigationView now shows its root view
and its descendants side-by-side. At least, it does that in Landscape mode—in
Portrait, you have a blank screen and a back button in the top left that reads
“Lists.” Tapping that button makes the Home view slide in.

This isn’t an ideal first-launch experience for users of your application. It
would be best to have the two columns always visible next to one another,
but unfortunately SwiftUI doesn't offer an easy way to do that at the moment
(you’d have to use UlKit’s UISplitViewController and a UlViewControllerRepresentable to
create one). Aside from that, however, the detail view being empty on launch
isn’t good. Let’s fix that.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Introducing iPadOS ® 161

So far your NavigationView instance contains a single List view, which makes
sense. However, this isn’t the only way to set up navigation: the view builder
can actually accept two views to display, corresponding to a master/detail
pair. The first view is a master list, while the second is the detail view that
will appear to the right. The code in the Home view currently only specifies the
master view, meaning the detail will initially be empty. To specify an initial
state for the detail view, you can just add a TodoList instance following the
initial List, and it will appear. Try adding TodoList(list: data.defaultitemList) at the
end of the Home view’s NavigationView view builder and relaunch the application.
No empty views, even in portrait mode.

It would be useful to make these kinds of changes only while running on iPad.
In the case of NavigationView, this behavior is built in, but you might want to
make your own adjustments depending on whether your app is running on
iPad or iPhone. The standard way to determine this in a UIKit app is for a
view to fetch its attached UlTraitCollection and look at the userinterfaceldiom property.
This is an enum type which tells you if your app is running on an iPhone, and
iPad, an AppleTV, or in CarPlay. SwiftUI doesn’t use UlTraitCollection, though,
so that option is unavailable. Instead, SwiftUI uses the environment to pass
this type of information around.

In the starter project, open AccessoryViews/Environment.swift. You’ll see an enum type
here named Interfaceldiom which acts as a wrapper for the corresponding UIKit
type, UlUserInterfaceldiom. You're going to initialize an instance of this type and
write it to your root view’s environment, so that views further down the hier-
archy can access it with an @Environment property.

To create a new environment value, you need to create a type conforming to
the EnvironmentKey protocol. This protocol has two requirements:

¢ It must specify a Value type. This is the type of property to be stored in the
environment.

¢ It must have a static property of that Value type, named defaultValue. If an
@Environment property attempts to retrieve a value from the environment
where no value has been set, this will be returned instead.

The values you'd use for this seem straightforward: the Value type will be
Interfaceldiom, and the default value will be .unspecified. Define this type just below
the Interfaceldiom definition:

p8/Do It/AccessoryViews/Environment.swift

struct InterfaceIdiomEnvironmentKey: EnvironmentKey {
typealias Value = InterfaceIdiom
static var defaultValue: InterfaceIdiom = .unspecified

http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/AccessoryViews/Environment.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 7. SwiftUl on iPadOS ¢ 162

The SwiftUI environment itself is made available as an instance of the Environ-
mentValues type. All the key paths you've passed into @Environment() property
wrappers have actually been key paths on an EnvironmentValues type; it contains
a great many extensions, each one fetching and/or storing values into some
internal storage. If you look at the type’s definition, you’ll see that aside from
its initializer and description, it contains one other API, a subscript operator:

public struct EnvironmentValues: CustomStringConvertible {
public init()
public var description: String { get }

public subscript<K>(key: K.Type) -> K.Value where K: EnvironmentKey

}

This subscript provides read and write access to the underlying storage as if
it were a Dictionary. Each key is the type of some EnvironmentKey (i.e. SomeEnviron-
mentKey.self), while the corresponding value is an instance of the same environ-
ment key’s Value type. You have an environment key now, so creating your
own property on EnvironmentValues is as simple as adding the following:

p8/Do It/AccessoryViews/Environment.swift
extension EnvironmentValues {
var interfaceldiom: InterfaceIdiom {
get { self[InterfaceldiomEnvironmentKey.self] }
set { self[InterfaceIdiomEnvironmentKey.self] = newValue }

}

This—a total of eight lines of code—is everything you need to do to provide
your own environment values. Now you just need to set a value. Happily,
UlWindowScene provides a traitCollection property that gives exactly what you need,
so return to SceneDelegate.swift, navigate to the presentView() method, and make
the following change to the definition of rootView:

p8/Do It/SceneDelegate.swift
let idiom = windowScene.traitCollection.userInterfaceIdiom
let rootView = view
.environmentObject(sharedDataCenter)
.environment(\.interfaceIdiom, InterfaceIdiom(idiom))

Now that the idiom is stored in the environment, let’'s update the Home view
to make use of it. Open Home.swift and add a new property to the Home type:

p8/Do It/Home.swift
@Environment (\.interfaceldiom) private var interfaceIdiom

Now scroll down to the end of the body implementation, to where you added
the TodoList earlier. Replace that with the following implementation, which will
check whether the app is running on an iPad before assigning the view:

http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/AccessoryViews/Environment.swift
http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/SceneDelegate.swift
http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/Home.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Popovers ® 163

p8/Do It/Home.swift

if interfaceldiom == .pad {
TodoList(list: data.defaultItemList)

}

You've now made your application launch experience much more pleasant
for iPad users, and you now know how to pass information down the view
hierarchy using custom environment values.

Popovers

If you tap on an “Add Item,” “Edit,” or “List Info” Ed: Just a reminder to use the keyword
tag on these Ul elements rather than quotes. | won't call them all out, so keep an eye out for more instances
in this chapter as well as the others. button now, you’ll see a large sheet appear from
the bottom of the screen containing the appropriate editor view. It probably
looks a little odd, though; it’s clearly been designed around an iPhone-like
view width, and it now has almost double that. Some of the interface elements,
for instance the color picker, are now growing to quite large proportions to
fill the available space, and that isn’t ideal. On the iPad, this is solved through
the use of popovers.

Popovers are small pop-up windows that appear to float above the main
interface, and which typically are attached to the Ul element that invoked
them. They provide an easy way to show a small set of temporary components,
and are perfect for showing the editor views that were designed for a narrower
and smaller screen.

SwiftUI provides an API for displaying popovers that is very similar to the one
used for displaying sheets. In fact, it’s so similar that on iPhone it will just
display the same content in a sheet instead. Like sheets, there are two
methods available on View, each taking a binding to some state variable that
will be used to determine whether the popover should appear. Also like sheets,
one method binds to a simple isPresented boolean value, while the other uses
a binding to some optional value, displaying when the item is non-optional.
Both methods have two additional (optional) parameters though, which are
unique to popovers. For instance:

extension View {

public func popover<Content>(
isPresented: Binding<Bool>,

attachmentAnchor: PopoverAttachmentAnchor = .rect(.bounds),
arrowkEdge: Edge = .top,
@ViewBuilder content: @escaping () -> Content

) -> some View where Content: View

http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/Home.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 7. SwiftUl on iPadOS ¢ 164

The two new parameters are attachmentAnchor and arrowEdge. As noted above, a
popover is typically attached to some other piece of Ul—typically the button
that caused it to appear. The attachmentAnchor specifies the location at which
the popover will attach to its parent. The default value uses an
Anchor.Source<CGRect> to provide the bounding rectangle of the parent view (see
Worklngmth Anchors “O_}’.INRE.l_g?"}.} O for more information on anchors). Alterna-

tively a UnitPoint can be used to indicate some location within or beyond the
view’s bounds, in unit-space coordinates.

The second new parameter tells the system which edge of the popover should
be connected to its parent view. The default of .top specifies that the popover
should appear below its parent on the screen, with its arrow pointing from
its top to meet the location of the attachmentAnchor. For a button in a navigation
bar, this is entirely appropriate. If your button were located at the bottom of
the screen, however, you'd specify a value of .bottom instead, to show the
popover above its parent. Likewise for popovers appearing close to the leading
or trailing edges of the screen.

Since the popover() modifier falls back to displaying a regular sheet on iPhone,
you can replace just about any use of .sheet() with a popover, safe in the
knowledge that your code will work correctly everywhere. One important
consideration, however, is where youll attach that modifier. When using
sheets, any view would do, as the sheet would just cover the entire screen;
for popovers, the required anchor will be interpreted in terms of the view
where the modifier is attached. This means that to attach a popover to a
button you’ll need to attach the modifier to that Button instance.

Let’s start with the item detail view. Open TodoltemDetail.swift and locate the body
implementation. Find the .sheet() modifier and delete it, then locate the editor-
Button property. Add a .popover() modifier to this button:

p8/Do It/TodoltemDetail.swift
var editorButton: some View {
Button(action: {
// <show editor>»
DA
// <image>
}
.accessibility(label: Text("Edit"))
.popover(isPresented: $showingEditor, content: {
self.editor
.frame(idealWidth: 500, idealHeight: 600)
1)

http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/TodoItemDetail.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Popovers ® 165

Note that the editor has been given an explicit ideal width and height. The
popover will be sized to fit its contents, but the List, Form, and ScrollView types
will all happily shrink down to nothing—and those are what you're putting
into the popover. Setting an ideal width and height here gives the system a
hint as to the size it should allocate, while still allowing it to become larger
or smaller under certain conditions. On the iPhone, for example, the width
and height will grow to match the sheet’s bounds.

Launch the application on an iPad or the iPad Simulator, then navigate into
a to-do item and tap the edit button in the top right. A popover should appear
containing the familiar editor interface. Tapping either the “Cancel” button
or anywhere outside of the popover will dismiss it without saving any changes.

Next, open TodoList.swift. In here you previously used an enum value to specify
which of two editors should be displayed by a single .sheet() modifier. Now that
you're going to remove that and use two separate .popover() modifiers attached
to two separate views, you no longer need that. Remove the EditorlD type and
the presentedEditor properties from the TodoList implementation, and replace them
with two new boolean state properties:

p8/Do It/TodoList.swift
@State private var showItemEditor = false
@State private var showlListEditor = false

Now find the body property and remove the .sheet() modifier. Now locate the
addButton property and change it to use the new state to display a popover:

p8/Do It/TodoList.swift
private var addButton: some View {
Button(action: {
self.editingItem = Self.itemTemplate
self.editingItem.listID = self.list?.id ?? self.data.defaultListID
self.showItemEditor.toggle()
DA
// <image>
}
.accessibility(label: Text("Add a new To-Do Item"))
.popover(isPresented: $showItemEditor) {
self.editorSheet
.environmentObject(self.data)
.frame(idealWidth: 500, idealHeight: 600)

}

Next, in the editorSheet property, replace self.presentedEditor = nil in both button
actions with self.showltemEditor = false. Lastly, in the barltems property definition,
change the info button definition to show a popover:

http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/TodoList.swift
http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 7. SwiftUl on iPadOS ¢ 166

p8/Do It/TodoList.swift
Button(action: { self.showListEditor.toggle() }) {
// <image>
}
.popover(isPresented: $showlListEditor) {
TodoListEditor(list: self.list!)
.environmentObject(self.data)
.frame(idealWidth: 500, idealHeight: 600)

}

The last place to make changes is in Home.swift. Remove the sheet modifier
from the body implementation there and replace it with a popover in the
addButton property:

p8/Do It/Home.swift
private var addButton: some View {
Button(action: { self.showingEditor.toggle() }) {
V2RSS 4

}
.popover (isPresented: $showingEditor) {
TodoListEditor(list: Self.listTemplate)
.frame(minWidth: 500, minHeight: 600)

}

Multiple Scenes

In iPadOS, applications can be launched in a number of different ways, and
can share the screen with one another. You typically pair two applications
on one screen in one of two ways:

e Launch both applications, then swipe up from the bottom of the screen
to enter the Dashboard. Drag one application’s window on top of another
to put them together on the same screen.

e While running one application, swipe up from the bottom of the screen a
short way to reveal the Dock, then drag an application from the dock to
the left or right of the screen.

In the first method, the two applications are always placed side-by-side in an
adjustable split-screen mode. In the second, where you drop the new applica-
tion makes a difference to how it opens: as you move to the right of the screen,
for example, the icon will first expand to show an iPhone-sized window hover-
ing over the top of the current application. Move a little closer to the screen
edge and it will expand to fill that side of the screen, pushing the current
application across into split-screen mode.

http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/TodoList.swift
http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/Home.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Multiple Scenes ® 167

All of this works today—try it out and you’ll see. What you currently can’t do
is open a second or third instance of “Do It” in this manner. To enable it,
you’ll need to make a small adjustment to the application’s metadata. Open
the project settings by selecting the project in the Project Navigator, then
select the “Do It” application target in the project editor. In the Deployment
Info section, select the checkbox next to “Supports multiple windows:”

¥V Deployment Info

Target Device

i05§13.4¢ iPhone
iPad
Mac (requires macOS 10.15)

Main Interface E

Device Qrientation Portrait
Upside Down
Landscape Left
Landscape Right

Status Bar Style = Default
Hide status bar

Requires full screen

Supports multiple windows Configure @

With this single change, the application can be opened multiple times Ed: There’s
a lot of passive voice in this chapter; although the copyeditor will likely pick it up, you may want to read
through what you have to fix as many as you can. For example, you can revise this sentence to read: With
this single change, you can open the application multiple times. Or if yu want to keep the reader out of it:
With this single change, users can open the application multiple times. Either will work. , allowing you
to drag a second instance out of the Dock.

Each application instance on the screen is a scene. All scenes are part of the
same running process, and share all data. Try opening two instances next to
one another showing the same list, and then mark an item completed in
one—the change will immediately be reflected in the other.

You'll learn more you can do with scenes in Dragging New Scenes, on page

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 7. SwiftUl on iPadOS ¢ 168

Keyboard Commands

The iPad has worked with external keyboards for some time now, whether
connected using Bluetooth or integrated with a stand or cover. Along with
the ability to type on physical keys, though, this brings the capability of typing
key chords to achieve effects within your application, like 3Z to undo, $4Z
to redo, or ¥F to search.

UIKit provides a handy API for implementing key commands, but SwiftUI on
iOS does not (though it does on macOS, so presumably official support will
be forthcoming soon). Instead, you’ll build a custom implementation that will
serve until a first-party keyboard API for iOS arrives in a future version of
SwiftUI.

Start by opening AccessoryViews/KeyCommands.swift. This file currently contains a
single structure named KeyCommand, which is a SwiftUI-style wrapper for a
UIKit UlkeyCommand instance. This is the type that you’ll be using to define
your supported key commands, and which will be used to pass the information
along to UIKit in a way that it understands. In UIKit, UlKkeyCommand objects are
used to define the semantics of a key command while providing an Objective-
C method selector—think of it as a ‘function name’ that can be applied to any
object. When matching key presses are detected, that method is sent to the
responder chain. You don't typically need to deal with responder chains when
working with SwiftUI, but you can find a brief overview in A Little Responder
Know-How, on page 170.

On top of this you’ll build two components:

¢ A class named CommandRegistrar which will manage the list of installed key
commands and vend Publisher instances that will deliver notifications when
the user invokes a command.

¢ A subclass of UlHostingController to serve as the root view, which will vend a
list of UlkeyCommand instances to the UIKit responder chain and provide
an Objective-C method to serve as a target for all SwiftUI-based key
commands.

Command Management

At the bottom of the file is a // MARK: - marker. Below that, create the Comman-
dRegistrar class:

p8/Do It/AccessoryViews/KeyCommands.swift

fileprivate final class CommandRegistrar {
typealias CommandPublisher = PassthroughSubject<KeyCommand,Never>
var publisher = PassthroughSubject<KeyCommand, Never>()

http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/AccessoryViews/KeyCommands.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Keyboard Commands ¢ 169

var commands: Set<KeyCommand> = []

func install(command: KeyCommand) -> AnyPublisher<KeyCommand, Never> {
V720 S

}

func remove(command: KeyCommand) {
commands. remove (command)
}
}

This class is straightforward: it maintains a Set of KeyCommand instances along
with a PassthroughSubject that publishes KeyCommand instances. When the user
presses a key combination that triggers a command, that command will be
sent to this publisher. With a little magic, the appropriate command will
invoke a block provided by a view to respond to that command. The magic
lives in the install(command:) method:

p8/Do It/AccessoryViews/KeyCommands.swift
func install(command: KeyCommand) -> AnyPublisher<KeyCommand, Never> {
commands .insert(command)
return publisher
.filter { $0 == command }
.eraseToAnyPublisher()

}

This is a small function, but it does a lot of work. When a KeyCommand is
installed it’s added to the commands set, and then a new Publisher is returned
that is specific to that command. This is accomplished by a filter() modifier to
the class’s publisher property. This will create a new publisher that only pub-
lishes its input if it’s the same KeyCommand that was passed to install(). The result
is then type-erased to an AnyPublisher instance and returned.

Receiving Events

Next you need to actually send something to the root publisher. For that,
you’ll create a single CommandRegistrar instance, and you’ll build a subclass of
UlHostingController that implements the action method used by the KeyCommand
type. This will also implement the keyCommands property from UlResponder to
return all the commands stored by the CommandRegistrar. The event system in
UIKit uses types conforming to UlResponder to deliver common events, and the
first responder is the starting point when it looks for event receivers, and is
typically a view or a control.

This all takes very little code to implement, added just below CommandRegistrar:

p8/Do It/AccessoryViews/KeyCommands.swift
fileprivate let keyCommander = CommandRegistrar()

http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/AccessoryViews/KeyCommands.swift
http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/AccessoryViews/KeyCommands.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 7. SwiftUl on iPadQS ¢ 170

final class KeyCommandHostingController<Content: View>: UIHostingController<Content> {

override var canBecomeFirstResponder: Bool { true }

override var keyCommands: [UIKeyCommand]? {
keyCommander.commands.map { $0.uikit }

}

override func swiftUIKeyCommand(_ sender: UIKeyCommand?) {
guard let command = KeyCommand(sender) else { return }
keyCommander.publisher.send(command)

}

The first item inside KeyCommandHostingController is an override of the canBecome-
FirstResponder property from UIResponder. The UlHostingController doesn’t implement
this property, so this subclass is required in order to turn on that functional-

ity.

In UIKit, as in AppKit before it, the event system is based around the concept of
responders, organized in a chain. In UIKit, this is represented by the UIResponder class,
which defines the basic event handling semantics of the user interface, such as
methods to handle touches, pressing, motion, and more. UIKit views and controls
are all responders, as are components like UlScene, UlApplication, and (typically) their
delegates.

The primary concept of the responder chain is that there is a single ‘active’ view,
which is called the first responder. This will usually be the focused control or view.
Any events that arrive are sent to that object first, but if theyre not handled, then
the next responder is queried instead. Each UlResponder identifies the next responder
in sequence. For example, a UlView will indicate either its view controller (if it has one)
or its superview. In this way, the event is delivered to the highest-placed responder,
with the system working downwards until it finds one that accepts it.

With the view controller in the responder chain, it will now be queried by the
system for the details of any key commands that it might support via the
keyCommands property. This implementation returns the embedded UlKeyCommand
objects held by each KeyCommand instance within the shared keyCommander.

The key commands all specify an action selector for UlResponder.swiftUlKey-
Command(_:) (defined just following the KeyCommand type itself). All objects in the
responder chain will be queried to see if they respond to this method, eventu-
ally arriving at this hosting controller. The method is implemented here to
wrap the UIKit class in a KeyCommand structure then send it using keyCommander’s
publisher.

report erratum -« discuss

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Keyboard Commands ¢ 171

You'll now need to use this new class as your root view controller. Open
SceneDelegate.swift and locate the presentView(_:in:) method. Find the line where a
UlHostingController is created and assigned to the window, and replace it with a
KeyCommandHostingController:

p8/Do It/SceneDelegate.swift
let window = UIWindow(windowScene: windowScene)
window. rootViewController = KeyCommandHostingController(rootView: rootView)

Handling Key Commands

Now you have storage and management for key commands, and you've hooked
them into the responder chain. It only remains to devise a suitable API so
that views can register their key commands and handle them.

A simple API is the best, especially in SwiftUI. Therefore, let’s use a simple
method on View that takes a KeyCommand and a block to invoke. This method
can then call keyCommander.install() and use the returned publisher to invoke
View.onReceive(); this leaves SwiftUI in charge of the details of correctly managing
threads and schedulers for the publisher.

In addition, a helper method that takes some of the component parameters
of a KeyCommand would also be useful, allowing a view to just specify a com-
mand’s title, input, and modifiers, for example. You can provide default values
for each argument so the caller can provide as much or as little detail as
necessary for their use case.

Put together, that gives you a simple API, implemented in a View extension.
Return to AccessoryViews/KeyCommands.swift and place it at the end of the file:

p8/Do It/AccessoryViews/KeyCommands.swift
extension View {
func onKeyCommand (
_ command: KeyCommand,
perform: @escaping () -> Void
) -> some View {
onReceive(keyCommander.install(command: command).map { in () },
perform: perform)

}

func onKeyCommand (
title: String,
input: String,
modifiers: KeyCommand.ModifierFlags = [],
attributes: KeyCommand.Attributes = [],
discoverabilityTitle: String? = nil,
perform: @escaping () -> Void
) -> some View {
let command = KeyCommand(title: title, input: input,

http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/SceneDelegate.swift
http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/AccessoryViews/KeyCommands.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 7. SwiftUl on iPadOS ¢ 172

modifierFlags: modifiers,

attributes: attributes,

discoverabilityTitle: discoverabilityTitle)
return onKeyCommand(command, perform: perform)

}

It’s time to put your new API to the test. Let’s add a keystroke of 3N to create
a new to-do item. There’s an existing way to do this via a button in TodolList,
so by adding the key command there you can make use of the same facilities
to show the item editor.

Open Todolist.swift. Somewhere above the TodoList type definition, define a Key-
Command, giving it a title and a discoverability title—the former is a short name,
while the latter is more descriptive of the command’s intent:

p8/Do It/TodoList.swift
fileprivate let newItemCommand = KeyCommand (
title: NSLocalizedString("New Item", comment: "Key command title"),
input: "n",
modifierFlags: [.command],
discoverabilityTitle: NSLocalizedString("Create a new to-do item",

comment: "Key command discoverability title"))

Now locate the TodolList view’s body implementation and add a call to your new
.onkeyCommand() modifier to the List view declaration:

p8/Do It/TodoList.swift
List(selection: $selectedItems) {
VRS S 4

}
// « view modifiers >
.onKeyCommand (newItemCommand) {
guard !self.showItemEditor && !self.showlListEditor else {
return

}

self.editingItem = Self.itemTemplate

self.editingItem.listID = self.list?.id ?? self.data.defaultListID
self.showItemEditor.toggle()

}

After checking that no popovers are being presented already, the attached
block performs the same steps as the “Add Item” button in the navigation
bar.

Now let’s add a command to pop open the list editor, as though the user had
tapped on the “Info” button. Put the KeyCommand next to the previous one:

p8/Do It/TodoList.swift
fileprivate let listInfoCommand = KeyCommand (

http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/TodoList.swift
http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/TodoList.swift
http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Keyboard Commands ® 173

title: NSLocalizedString("List Info", comment: "Key command title"),
input: "i",

modifierFlags: [.command],

discoverabilityTitle: NSLocalizedString("Show or edit list properties",

comment: "Key command discoverability title"))

Place the modifier on the List view, just as before:

p8/Do It/TodoList.swift

List(selection: $selectedItems) {
V720 B4

}

// < view modifiers »

.onKeyCommand (newItemCommand) {

V72
}
.onKeyCommand (listInfoCommand) {
guard !self.showItemEditor && !self.showListEditor, let = self.list else {
return
}
self.showListEditor.toggle()
}

Since you've provided a key command to create a new item, it seems appro-
priate to do the same for lists. Open Home.swift and define the key command
to use ${4N:

p8/Do It/Home.swift
fileprivate let newListCommand = KeyCommand (
title: NSLocalizedString("New List", comment: "Key command title"),
input: "n",
modifierFlags: [.command, .shift],
discoverabilityTitle: NSLocalizedString("Create a new to-do list",

comment: "Key command discoverability title"))

Attach the key command handler to the ForEach view. It only needs to toggle
the showingEditor state variable on and off:

p8/Do It/Home.swift

ForEach(data.todoLists) { list in
/] KL L.»

}

// <« onDelete »

// <« onMove »

.onKeyCommand (newListCommand) {
self.showingEditor.toggle()

}

Launch the app on an iPad with an attached keyboard, or on the iPad Simu-
lator. If using the simulator, make sure you turn on “Capture Keyboard” using

http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/TodoList.swift
http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/Home.swift
http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/Home.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 7. SwiftUl on iPadOS ¢ 174

either the button on the toolbar (labeled) or from the menu in 10 — Input —
Send Cursor to Device. Press the various key combinations to see them take effect.

That’s not all you can do, though. Your DataCenter has real Undo/Redo support
now, and the key commands for that are built-in. Try deleting an item then
pressing 3Z to see it reappear. Then press 8 {+Z to make it disappear again.
You can also use the three-finger tap gesture to perform the same built-in
actions. This all comes for free due to the KeyCommandHostingController class you
created earlier: simply by enabling canBecomeFirstResponder on the root view your
SwiftUI app gets to benefit from some of the built-in features of UlKit’s event
model, automatically.

Pointing Devices

iPadOS 13.4 added first-class support for trackpads and mice, with a new
cursor/pointer interaction model. SwiftUI provides some means to respond
to this, though not quite as full as that provided by UIKit. You can still make
good use of it to help snap the cursor to important Ul elements in a similar
manner to Apple’s own applications, however.

SwiftUI provides two methods on View to work with pointer interaction:

¢ onHover(perform:) registers a block that will be run whenever the pointer
enters or exits the bounds of its view. The block will receive a single
boolean parameter indicating whether or not the pointer is inside the
view’s bounds.

 hoverEffect(_:) specifies a HoverEffect to automatically perform when the
pointer is within a view’s bounds. This uses the same facilities as UIKit
to provide one of two standard appearances for the interaction, each using
a light source effect to provide some dynamism as the pointer moves

within the view’s bounds:

— .highlight will change the pointer into a platter located behind the
highlighted view. This is the default effect for buttons.

— lift will simulate a light source casting a shadow behind the view,
giving it the impression of being lifted above its surroundings. This
is the effect used by icons on the iPad home screen, and is similar to
the parallax effect of selectable items on tvOS.

— A third value, .automatic, will let the system choose an appropriate value.
Many standard system components already implement pointer interactions.
For example, the back button in a navigation bar already uses the highlight
appearance, and any editable text morphs the pointer into a vertical bar
cursor to aid precise inter-character selection:

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Pointing Devices ® 175

< Chores

Chores

Glitches Ahead!
At present (iPadOS 13.4) the SwiftUI implementation of hover
effects leaves something to be desired. When it works correctly
everything is fine, but in some cases it has some issues with its
appearance. Regular buttons and text will frequently be given a
solid white background, making the .highlight platter all but invisible.
In contrast, when applied to a button inside a navigation bar, the

transparency in place in the copy, leaving you with one semitrans-
parent icon floating over another. On top of this, the effect doesn’t
pad itself to expand beyond the content of its view, so it will be
very tightly clipped.

2 effect, which takes a copy of the view to which it applies, leaves

These issues are sure to be resolved soon—maybe even by the
time you read this book—but for now you should be aware that
this is the case. You'll resolve the last item above with a custom
view modifier in [xxx](#sec.hover.bounds.fix).

Generally speaking, you'll want to implement hover effects on any custom
interface components you've created. In this application, that means the list
editor with its color and icon selectors. The color wheel’s touch interaction
works well for pointers already—just clicking and dragging reveals and moves
a loupe, and for selecting precise colors fine precision is the order of the day.
Everything below that would benefit from a little help though, to snap the
pointer between elements and clearly indicate which item is active.

Let’s start with the color selectors. Open AccessoryViews/ColorPicker.swift. The
selector buttons are all simple circles with their appearance defined by a
custom button style at the top of this file. To apply the hover effect to all the
buttons, you can simply add it to the button style. In ColorButtonStyle.makeBody(),
add a .hoverEffect() modifier at the end of the method. If you launch the app
and try it out, though, you’ll see that the highlight platter fits very tightly
around the button, making it less obvious and honestly not very appealing.
To fix this, use this simple trick to enlarge the view’s bounds for the hover
effect, then reduce them back down for layout:

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Yvy

Yvy

Chapter 7. SwiftUl on iPadOS ¢ 176

p8/Do It/AccessoryViews/ColorPicker.swift
fileprivate struct ColorButtonStyle: ButtonStyle {
func makeBody(configuration: Configuration) -> some View {
configuration.label

.overlay(Circle().stroke().foregroundColor(.white))
.modifier(DoubleShadow(configuration.isPressed ? 1 : 6))
.padding(.vertical, 5)
.hoverEffect()
.padding(.vertical, -5)

}
Now the selection highlight looks a lot better:

The same approach works for the icon selector. Open AccessoryViews/IconChoos-
er.swift and add the extra modifiers to IconChoiceButtonStyle.makeBody():

p8/Do It/AccessoryViews/IconChooser.swift
func makeBody(configuration: Configuration) -> some View {
configuration.label

.font(.system(size: 24, weight: .bold, design: .rounded))
.padding(6)
. frame(width: 30)
.padding(14)
.background (background)
.scaleEffect(configuration.isPressed ? 1.2 : 1)
.padding(6)
.hoverEffect()
.padding(-6)

}

This has a similar appearance to the color selector buttons:

S| !
A O 75 @ a

Fixing Hover Effect Bounds

Twice now you've used an pad-and-shrink approach to give the hover effect
a larger area than the view it surrounds. If you attach a plain .hoverEffect() to
any of the text buttons in your navigation bar now, you’ll see that the same

http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/AccessoryViews/ColorPicker.swift
http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/AccessoryViews/IconChooser.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Pointing Devices ® 177

problem exists there, and it appears even worse when surrounding text,
because at least around a circular button there’s plenty of empty space for
the platter to appear. On a text view that isn’t true, though, the bounds of
the letters themselves reach all the edges of the view.

Rather than keep manually adding and removing padding everywhere, let’'s
create a single ViewModifier that will apply the effect for us. It can use an API
like the .padding() modifier, and will apply the requested padding, apply the
hover effect, then remove the padding. There are several ways to specify
padding, though:

¢ A simple numeric value, applied to all edges.

e An Edge.Set specifying which edges of the view should be padded, and how
wide the padding should be. Both of these have default values, so this is
actually the version you're using when you type .padding().

¢ An Edgelnsets instance giving explicit amounts of padding for the top, bot-
tom, leading, and trailing edges of the view.

It turns out that the first two methods can be implemented in terms of the
third (and this is what SwiftUI does internally, more or less). That means your
modifier only needs to keep track of two things: the HoverEffect to apply, and
the Edgelnsets for use for padding.

That implies the following straightforward implementation, which you should
put in AccessoryViews/ViewModifiers.swift:

p8/Do It/AccessoryViews/ViewModifiers.swift

struct NicelyHoverable: ViewModifier {
private let padding: EdgeInsets
private let effect: HoverEffect

init(_ insets: EdgeInsets, _ effect: HoverEffect = .automatic) {
self.padding = insets
self.effect = effect

}
func body(content: Content) -> some View {
content
.padding(padding)
.hoverEffect(effect)
.padding(-padding)
}

}

Crafting an entire structure to specify padding is a little onerous though, so
let's add a simplified initializer that will create it from a width and a set of
edges:

http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/AccessoryViews/ViewModifiers.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 7. SwiftUl on iPadOS ¢ 178

p8/Do It/AccessoryViews/ViewModifiers.swift
init(_ padding: CGFloat = 8, edges: Edge.Set = .all,
_ effect: HoverEffect = .automatic) {
self.padding = EdgeInsets(
top: edges.contains(.top) ? padding : 0,
leading: edges.contains(.leading) ? padding : 0,
bottom: edges.contains(.bottom) ? padding : 0,
trailing: edges.contains(.trailing) ? padding : 0
)
self.effect = effect

}

Modifiers are typically accessed through functions on View, though, so scroll
down to the View extension and add two new functions which map to the
modifier's two initializers:

p8/Do It/AccessoryViews/ViewModifiers.swift
func niceHoverEffect(_ padding: CGFloat = 8, edges: Edge.Set = .all,
_ effect: HoverEffect = .automatic) -> some View {
modifier(NicelyHoverable(padding, edges, effect))

}

func niceHoverEffect(_ insets: EdgeInsets, _ effect: HoverEffect = .automatic) -> some View {
modifier(NicelyHoverable(insets, effect))

}

Now you're ready to put it to work. Start by opening Home.swift, where you’ll
update the buttons in the navigation bar. Locate the body implementation,
and update the .navigationBarltems() modifier by appending .niceHoverEffect() to each
button:
List {

/K L»
}

// & other modifiers »

.navigationBarItems (
leading: EditButton().niceHoverEffect(),
trailing: addButton.niceHoverEffect())

Launch your application and try it out. The platter around the “Edit” button
seems correct, but the “Add” button’s platter doesn’t seem tall enough:

Edit (+)

As it turns out, everything has indeed worked exactly as requested. The
problem here is that images using SF Symbols draw themselves much taller
than their bounds. If you create a similar button in an empty view and select
it in a preview, you can see where the image view’s bounds really lie:

http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/AccessoryViews/ViewModifiers.swift
http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/AccessoryViews/ViewModifiers.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

What You Learned ® 179

~[l(images/iPadOS/ButtonBounds.png)

To remedy this, you'll need to increase the vertical padding a little on all your
icons. Since there are a lot of icons to cover, let’s add another helper function
the View extension in ViewModifiers.swift. This will be a version of the simple nice-
HoverEffect() method, but internally it will create a new Edgelnsets and add a little
to the top and bottom values:

p8/Do It/AccessoryViews/ViewModifiers.swift
func iconHoverEffect(color: Color = Color(.systemGroupedBackground),
_ padding: CGFloat = 8,
_ effect: HoverEffect = .automatic) -> some View {
let insets = EdgeInsets(top: padding+6, leading: padding,
bottom: padding+6, trailing: padding)
return modifier(NicelyHoverable(insets, effect))

Hard-Coded Numbers
The 6-point increase is purely based on what happens to look
“about right” in this application. Ideally a better implementation
of hoverEffect() will be forthcoming in a newer iPadOS software
release.

Apply this new modifier in the Home view to fix the problem on the “Add” but-
ton:

Edit (+)

That looks much better. Now look and see what other elements might benefit
from a hover effect, and see whether they need the custom niceHoverEffect() or
iconHoverEffect(), or whether a plain hoverEffect() will work on its own.

What You Learned

This has been a long chapter, and you've learned a lot about the special
facilities of iPadOS and how to take advantage of them. Specifically, this
chapter covered:

* Displaying multiple scenes from your application side-by-side.

e Making good use of popovers rather than large screen-filling modal sheets.

e Managing the appearance of navigation views in a two-pane system.

¢ Providing support for the new pointer interaction model in iPadOS 13.4.

¢ Implementing key command handling, including the necessary wiring to
plug into UIKit's APIs and event propagation system:.

http://media.pragprog.com/titles/jdswiftui/code/p8/Do It/AccessoryViews/ViewModifiers.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 7. SwiftUl on iPadOS ¢ 180

Right now, you might be wondering what particular utility is gained from
having two instances of your application open side-by-side. In the next
chapter, you’ll see the answer to that, as we look at integrating drag & drop
support throughout the user interface.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

CHAPTER 8

Implementing Drag and Drop

Story Map

Why do I want to read this?
Drag and drop has become an important part of a good iPad app, and it’s
crucial to support it wherever possible.

What will I learn?
You'll learn how SwiftUI enables you to quickly and easily add drag and
drop support to your application, see how to integrate the object-oriented
item provider APIs with a structure-based data model, and how to drag
items to create new scenes.

What will I be able to do that I couldn’t do before?
You'll have a full grasp of the components of drag & drop in SwiftUI
applications, and you’ll be able to implement top-quality support for it in
just a few lines of code.

Where are we going next, and how does this fit in?
Now you've worked with several different ways of presenting and interact-
ing with your data. Many applications use a relational model, so in the
next chapter you’ll see how SwiftUI can be used with a data model defined
using Core Data.

iPadOS has some first-class support for drag-and-drop, and you can already
take advantage of much of it without writing any code. If you open a to-do
item editor, for example, you can select and drag text to or from any text field.
You can select text in another app—for instance Safari—running in split
screen, and drag that directly into the text view for item’s notes property. Many
system controls and views already know how to deal with various types of
data via drag & drop, in fact, including lists via the ForEach view. In this latter

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

o b~ W

Chapter 8. Implementing Drag and Drop ¢ 182

case, however, you'll need to do a little extra work to tell SwiftUI what types
of data you want to send or receive, and how to handle that data as it arrives.

Understanding Item Providers

Moving data around using drag & drop is accomplished using instances of
NSitemProvider. This class encapsulates information about some piece of infor-
mation and the various ways it can be encoded or decoded. Each encoded
data format is represented by a Uniform Type Identifier or UTI, which is a
string containing different identifiers in reverse-DNS format: the first element
has the greatest scope, the last has the narrowest scope. These identifiers
then have a hierarchy, where more narrowly-defined types conform to less
narrowly-defined ones. Thus the public.text UTI contains all types and encodings
of text, whether ASCII, UTF-8, UTF-32, or whether plain-text or formatted
such as HTML or XML. If you only handle plain text, you’d use public.plain-text,
or public.utf8-plain-text to only accept UTF-8 encoded data. If you want XML, then
you'd use public.xml. See Figure 7, UTI Conformance, on page 183 for some

examples of UTI conformance.

The NSltemProvider type was designed in Objective-C, and most of the API
assumes it's working in terms of model objects. These objects would then
conform to and implement protocols to make themselves usable by the item
provider system. When using Swift struct types, however, it takes a little more
work to set things up. For this reason an item provider has been created for
you in this chapter’s sample project—look in Do It/Model/ltemProvider.swift to find
classes for sending and receiving data through an NSltemProvider. Most of the
content of the file is out of the scope of a SwiftUI book, though your author
would encourage you to look at it for some ideas on how you might implement
something similar in your own application. Suffice to say that you'll use a
TodoltemProvider when dragging an item or list out of the app, and an ItemReceiver
when receiving something dragged from elsewhere.

At the top of the file, however, are some important definitions:

p9/Do It/Model/ltemProviders.swift

let todoItemUTI = "com.pragprog.swiftui.todo.item"

let todolListUTI = "com.pragprog.swiftui.todo.list"

let todoItemUUIDUTI = "com.pragprog.swiftui.todo.item.uuid"
let todolListUUIDUTI = "com.pragprog.swiftui.todo.list.uuid"
let rawTextUTI = kUTTypeUTF8PlainText as String

let jsonUTI = kUTTypelSON as String

Here you have the definitions of the UTIs supported by the application for
vending and receiving to-do items and lists. On lines 1 and 2 are the identifiers

http://media.pragprog.com/titles/jdswiftui/code/p9/Do It/Model/ItemProviders.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Dragging Out ® 183

for JSON-encoded items and lists. On lines 3 and 4 are identifiers for a type
of data only usable within the application itself: these encode just the unique
identifier (UUID) of the item being provided. Lastly, on lines 5 and 6 are some
more Swift-friendly declarations of the public.utf8-plain-text and public.json identifier,
found in the CoreServices framework. When using the former, the item or list
is encoded as a simple formatted string, suitable for dragging into a text editor,
while the latter is used only when receiving plain JSON data that may or may
not contain to-do item or list data.

Since two of these type identifiers are designed to export data in a structured
format, their details have been added to the project’s Info.plist. If you open the
project editor and select the application target, then the “Info” tab, you'll see
that there are two entries in the “Exported UTIs” section corresponding to the
entries on lines 1 and 2 of ItemProviders.swift. Importantly, they are declared to
conform to the UTI of JSON data, public.json; this means that they might be
dragged to any application that works with generic JSON data, for instance
a javascript editor. The figure below shows the conformance hierarchy for the
types used by “Do It:”

’ public.text ‘ } com.pragprog.swiftui.todo.item.uuid i

’ public.plain-text ‘ ’ public.json
’ public.utf8-plain-text ‘ com.pragprog.swiftui.todo.item com.pragprog.swiftui.todo.item
Legend

Figure 7—UTI Conformance

Dragging Out

The ItemProvider class does just about everything you need, but first you have
to obtain one. Since ItemProvider needs a reference to the DataCenter, it’s logical
to provide API on DataCenter to provide them.

Open Model/DataCenter.swift and add an extension to define two new functions:

p9/Do It/Model/DataCenter.swift
// MARK: - Drag & Drop

http://media.pragprog.com/titles/jdswiftui/code/p9/Do It/Model/DataCenter.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 8. Implementing Drag and Drop ® 184

extension DataCenter {
func itemProvider(forList list: TodoItemList) -> NSItemProvider {
let provider = TodoItemProvider(dataCenter: self, list: list)
let result = NSItemProvider(object: provider)
return result

}

func itemProvider(forItem item: TodoItem) -> NSItemProvider {
let provider = TodoItemProvider(dataCenter: self, item: item)
let result = NSItemProvider(object: provider)
return result

}
Now you’ll use this to implement item dragging from the list view.

There are two sets of methods used to implement drag and drop in SwiftUI
on iOS. One set, provided when SwiftUI launched in iOS 13.0, is tailored
exclusively to lists, while the other more generic variant arrived in iOS 13.4.

The first set consists of two view modifiers:

e View.itemProvider(_:) allows you to attach a block which will vend an optional
NSltemProvider instance relating to the view’s content.

e DynamicViewContent.onlInsert(of:perform:) will call the provided block when a drop
occurs of one of a set of allowed UTlIs, along with the index at which the
items was dropped. This is specifically for list types, and enables anima-
tions on the list view, moving rows out of the way as an item is dragged
over.

The second, more general API involves some modifiers on the View type, and
which apply to any view, not only lists:

e onDrag(_:) operates in a manner similar to the older itemProvider(_:), except
that the provided block is not optional, and returns a non-optional
NSItemProvider.

o onDrop(of:isTargeted:perform:) and onDrop(of:delegate:) provide drop support for
any view, although at this time this does not appear to include List, Form,

or ForEach views.

The drop API is quite flexible, and in fact contains three APIs, two of which
have the same selector but accept different blocks. You’'ll learn more about
these later in this chapter.

One drawback in SwiftUI is that in any List or Form view on iOS, this is the *only* way
to receive items via drag-and-drop, and it *always* acts as though a new item will be

report erratum -« discuss

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Dragging Out ® 185

inserted into the list. None of the various onDrop() modifiers appear to work on a List
or its contents at all, and any attempt to use onlnsert() to add an item will cause
existing list contents to move out of the way, making it impossible to, say, drag an
item onto a list row to add that item to that list. Hopefully this will be resolved in a
future version of SwiftUI.

Open TodoltemRow.swift and update its body property to add an onDrag(_:) modifier
to the outermost HStack, returning an item provider for that row’s item:

p9/Do It/TodoltemRow.swift
var body: some View {
HStack {
V2 P

}

.onDrag { self.data.itemProvider(forItem: self.item) }

}

And... there is no step two Ed:Notsureyou need this sentence . Launch your application
on an iPad, or the iPad simulator, then open another app next to it in which
you can type—Messages is available on the simulator and works nicely.
Navigate into an item list and then drag the item out and onto the Messages
compose window. When you drop it, the text version of your data will appear
in the new message field, as shown below:

report erratum -« discuss

http://media.pragprog.com/titles/jdswiftui/code/p9/Do It/TodoItemRow.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 8. Implementing Drag and Drop ® 186

Complete Swiftul book sample e

D eOO -

Complete SwiftUl book sample
SwiftUl Book

Priority: high
Completed: 8/5/19, 1114 PM
Due Date: 8/3/19, 2:30 PM

Use parts of the initial setup
tutorial, to demonstrate how |
plan to introduce and explain
new code.

D eOO -

Implementing the same functionality for lists is nearly identical; this time,
open Home.swift and add the onDrag(_:) modifier within the body property of the
Home view itself, attached to the Row instance:

p9/Do It/Home.swift
ForEach(data.todoLists) { list in
NavigationLink(destination: TodoList(list: list).font(nil),
tag: .list(list.id),
selection: self.$selection) {
Row(name: list.name,icon: list.icon, color: list.color.uiColor)
.onDrag { self.data.itemProvider(forList: list) }

}

Repeat the experiment with the Messages app, this time dragging a list out
of the Home view, and you’ll be rewarded with something like this:

SwiftUl Book

O Choose cover image

Complete SwiftUl book

sample

O Send final draft to editor o

http://media.pragprog.com/titles/jdswiftui/code/p9/Do It/Home.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Dragging In ¢ 187

Dragging In

So far you've seen how to export items and lists via drag & drop, but that’s
only using the string exported. The other supported UTIs are all specific to
this application, or to an application using the same data types, and they're
designed to let you drag items around within the same application. For
example, you might drag items into different lists rather than opening each
item’s editor individually and navigating the interface there to select a list.

When dragging into a list, you use the onInsert(of:perform:) modifier to decide
what you’d like to receive and to handle any dropped items. This is the older
API which is intended for inserting a new item into a list, and this is the only
option available to lists (see Dropping on Lists, on page 184).

Return to TodoList.swift. Scroll down toward the bottom of the “Helper Properties”
extension and locate the droppableUTIs property:

private var droppableUTIs: [String] {
return []

}

Let’s modify this to return values appropriate for the type of data being dis-
played. If a list is being shown, then todo items can be dropped onto it, along
with plain strings (which you’ll use to create a new item). If one of the group
types is being displayed, then the suitable interactions are much fewer:

e “Today:” For an item to appear here, it needs to have a due date today.
While you might drag an item onto this list to assign it a due date of
midnight tonight (for instance), this doesn’t really feel ideal. If such an
operation were useful, dropping it on the button in the HomeHeader would
seem more appropriate, if anything.

e “Scheduled:” This shows anything with a due date, across the entirety of
time. It doesn’t seem useful as a drop target—what date would it assign,
and what would the index of its drop location mean?

e “Overdue:” Dropping here would... what? Mark an item overdue? What
date would it assign? Again, what would the drop location imply?

e “All Items:” This alone seems appropriate as a drop target. Any item already
in the data store wouldn’t be usefully dropped (it’s already there), but new
items in JSON and new items from strings would be fine. You need only
ensure that the item landed in the right index within the global item list,
to ensure it doesn’t “jump” to the end after being dropped.

With this in mind, update the definition of droppableUTIs to return different non-
empty UTI arrays based on the type of data being displayed:

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 8. Implementing Drag and Drop ® 188

p9/Do It/TodoList.swift
private var droppableUTIs: [String] {
switch listData {
case .list: return [rawTextUTI, todoItemUUIDUTI, todoItemUTI, jsonUTI]
case .group(.all): return [rawTextUTI, todoItemUTI, jsonUTI]
default: return []
}
}

Now scroll further down and locate a method within the “Model Manipulation”
extension named handleDrop(at:providers:). This is where you’ll handle any data
dropped onto the list. At present it only contains some verification of the data
being displayed, and the beginnings of an invocation of ItemReceiver.readFromPro-
viders(_:completion:). Some basic error handling is there, but the rest needs needs
to be implemented.

While the ItemReceiver class handles the specifics of dealing with NSltemProvider,
it’s still necessary to look at the returned values. Remember that multiple
items can be included in a single drag operation, so the system provides one
NSltemProvider instance for each item being dropped. ItemReceiver manages all of
these asynchronously and hands out an array of ItemReceiver.Output instances
containing the decoded data. This is an enum type, defined in Model/ltem-
Providers.swift:

enum Output {
case item(TodoItem)
case list(TodoItemList, [TodoItem])
case existingItem(TodoItem)
case existinglList(TodoItemList)
case string(String)

}

There is one enum entry here for each of the UTI's defined at the top of the
file.

To handle these values, return to Todolist.swift and the handleDrop() method, and
add a for loop to iterate over the dropped items. Start by handling just the
existing-item case:

p9/Do It/TodoList.swift
for value in output {
switch value {
case .existingItem(let item):
if item.listID == list.id {
// just move it up or down
let items = self.data.items(in: list)
if let curIndex = items.firstIndex(where: {$0.id == item.id}) {
let indices = IndexSet(integer: curlIndex)

http://media.pragprog.com/titles/jdswiftui/code/p9/Do It/TodoList.swift
http://media.pragprog.com/titles/jdswiftui/code/p9/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Dragging In ® 189

self.data.moveTodoItems (fromOffsets: indices,
to: index, within: list)

break
}
}
else {
self.data.moveTodoItems (withIDs: [item.id],
toList: list,
at: index)
}
default:

self.errorPublisher
.send(ItemProviderError.unsupportedDataType)
return

}

The majority of the work is being done by the DataCenter here, but there is still
a check to make: if the item is being dropped on the same list of which it’s
currently a member, you should treat it as a simple move operation, in the
same manner as the onMove() modifier in this view’s body. If not, then the Data-
Center handles the business of moving the item from one list to another,
updating the affected lists and items appropriately.

You can try this out now: launch the application on an iPad or the iPad
Simulator, then open a second instance alongside it. Navigate to a different
list in each scene, and drag an item out of one list and into the other. You’'ll
see the dropped item land in the requested position, and if you navigate in
each scene to the opposite scene’s list you'll see that the changes are reflected
on both sides.

Chores SwiftUl Book
O Feed the cat Complete SwiftUl book sample
Complete SwiftUl book sample Send final draft to editor
2/19/20, 2:30 PM
@ Book flights and hotel room for Burning Cat O Choose cover image
3/7/20, 6:00 PM

12/10/19, 6:00 PM

O Have armchairs reupholstered & ready to use
4/20/2 0 AM

Chores SwiftUl Book

O Send final draft to editor

2/19/20, 2:30 PM

(O Feed the cat

@ Complete SwiftUl book sample O Choose cover image

3/19, 2:30 PM 20, 6:00 PM

@ Book flights and hotel room for Burning Cat

12/10/19, 0 PM

O Have armchairs reupholstered & ready to use

4/20/20, 10:0!

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 8. Implementing Drag and Drop ® 190

The next type of drop you’'ll need to handle is a brand new item. This is han-
dled slightly differently depending on whether the view is displaying a single
list or the “All Items” group: in the former case the item is simply added and
then shulffled into place within the list; in the latter the drop index means
something different, so it just adds the item to the end of the list and let the
data center handle the index internally.

Add the following new case, after the .existingltem case:

p9/Do It/TodoList.swift
case .item(let item):
// insert at end of list
let items = self.data.items(in: list)
var newltem = item
newItem.listID = list.id
if case .group(.all) = self.listData {
self.data.addTodoItem(newItem, globalIndex: index)

}

else {
self.data.undoManager?.beginUndoGrouping()
self.data.addTodoItem(newItem)
let offsets = IndexSet(integer: items.count)
self.data.moveTodoItems(fromOffsets: offsets,

to: index, within: list)

self.data.undoManager?.endUndoGrouping()

}

Note the calls to beginUndoGrouping() and endUndoGrouping() on the DataCenter’'s
undoManager property: most undo/redo registration happens automatically, but
in this case you want the addTodoltem() and the moveTodoltems() to be a single
undo/redo operation. You’'ll hook into the NSUndoManager later in this chapter.

Testing this is a little harder. There is a JSON file in the code download for
this book, at sample-data/todo-item-drop.json. You can load this file into the Files
app on your iPad or iPad Simulator and then drag it from there into a list to
see it take effect:

@ Book flights and hotel room for Burning Cat

12/10/19, 6:00 PM 9

O Have armchairs reupholstered & ready to use todo-item.json
4/20/20, 10:00 AM

@ Book flights and hotel room for Burning Cat

12/10/19, 6:00 PM

(O Imported Item

O Have armchairs reupholstered & ready to use todo-item.json
4/2 5:33 PV

0/20, 10:00 AM

http://media.pragprog.com/titles/jdswiftui/code/p9/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Dragging In ® 191

The last type to handle is a plain string. A user can create a new to-do item
by dragging some text into a list, and the new item will be created using that
text as its title. This functions very similarly to the .item case, simply creating
a new Todoltem rather than receiving one already made:

p9/Do It/TodoList.swift
case .string(let str):
// new item with this as its title
let items = self.data.items(in: list)
let newltem = TodoItem(title: str, priority: .normal,
listID: list.id)
if case .group(.all) = self.listData {
self.data.addTodoItem(newItem, globalIndex: index)

}

else {
self.data.undoManager?.beginUndoGrouping()
self.data.addTodoItem(newItem)
let offsets = IndexSet(integer: items.count)
self.data.moveTodoItems(fromOffsets: offsets,

to: index, within: list)

self.data.undoManager?.endUndoGrouping()

}

Try this out by launching Safari alongside the application, selecting some
text, and dragging it across.

Dropping Lists

Adding drop support to the Home view is very similar. A largely empty imple-
mentation of handleDrop(at:providers:) is already present in Home.swift in the starter
project, so you need only add case statements for list and string inputs:

p9/Do It/Home.swift
case let .list(list, items):
self.data.undoManager?.beginUndoGrouping()
self.data.addList(list)
for item in items {
self.data.addTodoItem(item)
}

self.data.undoManager?.endUndoGrouping()

case let .string(str):
let list = TodoItemList(name: str, color: .random(),
icon: randomIcon())
self.data.addList(list)

Attaching this to the view is likewise a straightforward task; add the following
after the onDelete() and onMove() modifiers in the view’s body:

http://media.pragprog.com/titles/jdswiftui/code/p9/Do It/TodoList.swift
http://media.pragprog.com/titles/jdswiftui/code/p9/Do It/Home.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 8. Implementing Drag and Drop ¢ 192

p9/Do It/Home.swift
ForEach(data.todoLists) { list in
/] K L..»

}

// « onDelete »

// <« onMove »

.onInsert(of: [todoListUTI, jsonUTI, rawTextUTI],
perform: self.handleDrop(at:providers:))

Dragging New Scenes

One convenient feature in iPadOS 13 is the ability to create a new scene
within your application through drag & drop. For instance, dragging a tab or
a URL within Safari onto the edge of the screen will open a second scene
containing the item being dragged. If you're looking to move items around by
dragging them from one list to another, it would be a lot simpler if there were
a single gesture that would open a second list in a new scene; well, that is
possible with SwiftUI as well, though much of the work takes place in UIKit
and the Scene Delegate. There are some steps to take to have it all nicely
integrated, though, as you'll see.

The primary means by which the system knows to make ‘open a scene’
available as a drag target comes from data attached to the dragged item’s
NSltemProvider. In this case, contained data or its UTI aren’t used—instead, an
NSUserActivity instance is used to determine the intent. Any application can
define activity identifiers (strings in the familiar reverse-DNS format) that it
will handle. If a dragged item with such an activity attached reaches the edge
of the screen, iPadOS will instruct the application that responds to this
activity type to create a new scene, and the activity itself will be passed into
the delegate of that new scene.

The first thing, then, is to declare that your application supports activities,
which is done through an entry in the app’s Info.plist file. Select the project in
Xcode’s Project Navigator, then the “Do It” target, and finally the Info tab.
Add a new row to the property list named NSUserActivityTypes and make it an
Array. Next add two items within that array, and give them values of
com.pragprog.swiftui.ShowTodoltem and com.pragprog.swiftui.ShowTodoList. The result
should look something like this:

¥ NSUserActivityTypes { Array (2 items)
Item O String com.pragprog.swiftui.ShowTodoltem
ltem 1 String com.pragprog.swiftui.ShowTodoList

Next, open Model/ltemProviders.swift and look for the NSUserActivity section, near line
100. In here are extensions for the Todoltem and TodoltemList types, each defining
their associated activity type along with a property to obtain an NSUserActivity

http://media.pragprog.com/titles/jdswiftui/code/p9/Do It/Home.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Dragging New Scenes ® 193

instance corresponding to a particular item or list. The details are fairly sparse,
since all you need for the purpose of opening a new scene is some way to
identify which item or list you should show. The only metadata you need
alongside the activity’s type identifier is the UUID of the item in question:

p9/Do It/Model/ltemProviders.swift
var userActivity: NSUserActivity {
let activity = NSUserActivity(activityType: Self.activityType)
activity.title = name
activity.targetContentIdentifier = id.uuidString
return activity

}

To attach these activities to your item providers, open Model/DataCenter.swift and
find the “Drag & Drop” extension containing the two itemProvider() methods.
You attach a user activity to an item provider using NSltemProvider.registerOb-
ject(_:visibility:), which adds a new type of data to those supplied by the item
provider. In this case it adds data with a UTI of com.apple.uikit.useractivity. To
attach the activity, add something like the following to both itemProvider()
methods:

p9/Do It/Model/DataCenter.swift

let result = NSItemProvider(object: provider)
result.registerObject(list.userActivity, visibility: .all)
return result

The job of handling this activity information falls to your SceneDelegate. When
a scene session is connected, your delegate will be provided with a set of
UlScene.ConnectionOptions, and from there you can determine whether you've been
invoked in response to a user activity.

Open SceneDelegate.swift and look at the top function: scene(_:willConnectTo:options:).
The starter project has factored out the creation and assignment of the
UlHostingController into a new method, presentView(_:in:), and you’ll use this to put
your chosen SwiftUI view on the screen.

Start by looking at any user activities in the provided connection options;
you’ll use only the first handled instance. Add this code just above the call
to presentView(Home(), in: scene):

p9/Do It/SceneDelegate.swift
for activity in connectionOptions.userActivities {
guard let contentID = activity.targetContentIdentifier else {
continue

}

switch activity.activityType {
default:

http://media.pragprog.com/titles/jdswiftui/code/p9/Do It/Model/ItemProviders.swift
http://media.pragprog.com/titles/jdswiftui/code/p9/Do It/Model/DataCenter.swift
http://media.pragprog.com/titles/jdswiftui/code/p9/Do It/SceneDelegate.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 8. Implementing Drag and Drop ® 194

break

}

You skip anything without a targetContentldentifier, since you need that to locate
any referenced list or item. Next you look at the activity type, and skip any
that you don’t recognize; at the moment, that’s everything. Add a case for
handling TodoltemList.activityType:
p9/Do It/SceneDelegate.swift
case TodoItemList.activityType:
guard
let uuid = UUID(uuidString: contentID),
let list = sharedDataCenter.list(withID: uuid)
else { break }
let view = TodoList(list: list)
presentView(view, in: scene)
return

Here you decode the UUID from the activity’s targetContentldentifier, then locate
the corresponding TodoltemList. If that all works, then you simply present that
list in a new Todolist view. Fairly straightforward.

Let’s test it out. Launch the app on an iPad or iPad simulator, then drag a
list out towards the edge of the screen, and when the system reveals a new
scene area as a drop target, let go. A new scene will appear showing your
list—it worked

Well, almost:

2 100% @)

Feed the cat

Book flights and hotel room for
Burning Cat

Imported Item

Have armchairs reupholstered &
ready to use

The entire Ul is disabled, and there’s no title—actually, there’s no navigation
bar at all. In fact, that’s why the list is disabled: the NavigationLink views only
function within a NavigationView, and you're only displaying a TodoList, which

http://media.pragprog.com/titles/jdswiftui/code/p9/Do It/SceneDelegate.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Dragging New Scenes ® 195

doesn’t contain a navigation view. You’ll need to add one. This could be as
simple as wrapping one in the code you used above:

let view = NavigationView { TodoList(list: list) }
presentView(view, in: scene)

Try that in portrait orientation and you’ll likely see something odd, though:
the iPad shows the (currently empty) detail view and slides the top-level view
off the scene’s leading edge. Instead, you want to always use a stack format
similar to the iPhone, so add a call to .navigationViewStyle() to fix that:

let view = NavigationView {
TodoList(list: list)

}
.navigationViewStyle(StackNavigationViewStyle())
presentView(view, in: scene)

However, while you're here, let's add something else. Apple suggests that
secondary scenes provide some way for the user to easily dismiss them; let’s
add that capability by adding a “Done” button to the leading edge of the new
scene’s navigation bar. The means to dismiss a scene is through the shared
UlApplication instance’s requestSceneSessionDestruction() method, which requires a
reference to the UlSceneSession being dismissed and optionally a handler for
any errors that occur.

That gives you something like this:

let button = Button(action: {
UIApplication.shared
.requestSceneSessionDestruction(session, options: nil,
errorHandler: nil)
B A
Text("Done")
.bold()
}
let view = NavigationView {
TodoList(list: list)
.navigationBarItems(leading: button)

}
.navigationViewStyle(StackNavigationViewStyle())

Now think about what your code will look like for the other activity you need
to handle: everything except TodoList(list: list) is going to be identical. So, that’s
12 lines of boilerplate in 13 lines of code. This is ripe for factoring, so that’s
what you'll do, by creating a ViewModifier to handle the details.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 8. Implementing Drag and Drop ® 196

Open AccessoryViews/ViewModifiers.swift, and scroll down to the View extension. Just
above this, create a new ViewModifier type named SceneSessionDismissal, with
properties for the UlSceneSession and optional error-handler:

p9/Do It/AccessoryViews/ViewModifiers.swift

struct SceneSessionDismissal: ViewModifier {
private let session: UISceneSession
private let errorHandler: ((Error) -> Void)?

init(_ session: UISceneSession, errorHandler: ((Error) -> Void)? = nil) {
self.session = session
self.errorHandler = errorHandler

}

func body(content: Content) -> some View {
VV2 S 4

}

}
The content of the body(content:) method should be familiar:

p9/Do It/AccessoryViews/ViewModifiers.swift
func body(content: Content) -> some View {
let button = Button(action: {
UIApplication.shared
.requestSceneSessionDestruction(self.session, options: nil,
errorHandler: self.errorHandler)
A
Text("Done")
.bold()
}

return NavigationView {
content.navigationBarItems(leading: button)

}

.navigationViewStyle(StackNavigationViewStyle())

}

For conciseness, add a new function to the bottom of the View extension here
to wrap the modifier into a single call:

p9/Do It/AccessoryViews/ViewModifiers.swift
extension View {
func dismissingSceneSession(
_ session: UISceneSession,
errorHandler: ((Error) -> Void)? = nil
) -> some View {
modifier(SceneSessionDismissal(session, errorHandler: errorHandler))

http://media.pragprog.com/titles/jdswiftui/code/p9/Do It/AccessoryViews/ViewModifiers.swift
http://media.pragprog.com/titles/jdswiftui/code/p9/Do It/AccessoryViews/ViewModifiers.swift
http://media.pragprog.com/titles/jdswiftui/code/p9/Do It/AccessoryViews/ViewModifiers.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

What You Learned ® 197

With this, your activity handler in SceneDelegate.swift can be updated with just
one extra line:

p9/Do It/SceneDelegate.swift

let view = TodoList(list: list)
.dismissingSceneSession(session)

presentView(view, in: scene)

The case for handling a single item is very similar:

p9/Do It/SceneDelegate.swift
case TodoItem.activityType:
guard
let uuid = UUID(uuidString: contentID),
let item = sharedDataCenter.item(withID: uuid)
else { break }
let view = TodoItemDetail(item: item)
.dismissingSceneSession(session)
presentView(view, in: scene)
return

Rebuild your application and drag out new scenes from lists and items. They
should all appear and function correctly, and the “Done” Ed: Just a reminder about
using the keyword tag for Ul elements. button in their navigation bars should close the
scene correctly.

What You Learned

This chapter has covered a lot of ground, and you've now used all of the basic
drag and drop APIs provided by SwiftUI.

¢ Implementation of drop support for insertion into list views, each defining
the specific types of data it will accept.

e Exporting and importing data in several different formats.

¢ Dragging and dropping items within the same application across scenes
and views to make gestural modifications to your data model.

¢ Using drag and drop gestures to spawn new scenes displaying a subset
of your app’s data.

In the last chapter, we're going to look at how you might integrate your SwiftUI
application with a Core Data model, such as you might encounter in a more
complicated application. You'll learn the tools available from SwiftUI, build
some of your own, and learn what you'll need to do differently when dealing
with referential model types rather than value types.

http://media.pragprog.com/titles/jdswiftui/code/p9/Do It/SceneDelegate.swift
http://media.pragprog.com/titles/jdswiftui/code/p9/Do It/SceneDelegate.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

CHAPTER 9

Core Data and Combine

Story Map

Why do I want to read this?
Your application has a very simple data model right now, but that’s fairly
unusual. Data is normally more complex and is frequently changing.

What will I learn?
You'll take a Core Data model, which presents a much-expanded view of
your application’s data, and you’ll learn how to tie that into your SwiftUI
views. You’'ll learn how to use Combine to allow your views to respond
instantly to changes in your data, and to safely manage network data
requests.

What will I be able to do that I couldn’t do before?
You’'ll be able to build a SwiftUI application that uses Core Data as its
backing store. You'll be able to use the facilities of the Combine framework
to quickly manage data flow between the components of your application.

Where are we going next, and how does this fit in?
You're done with the book. You now know how to use SwiftUI to create
well-behaved modern applications, and have a thorough grounding in the
available facilities of the framework. Congratulations!

Up to this point, you've used Swift value types to represent your data models,
and have used classes only sparingly. Using strictly immutable copies of
value types in this way has many benefits in terms of thread safety, and can
make it easier to reason about your data model, but as that model
grows—particularly gaining relationships between model items—the burden
of maintaining the model’s internal consistency increases. Already you have
helper methods in DataCenter to locate related lists or items, special functions
to update edited copies of model data in the shared data store, and just in

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 9. Core Data and Combine ¢ 200

the last chapter you used publishers to monitor the shared store in order to
forcibly update your copies of the data should it change. The data model is
only going to grow from here on, so it’s worth looking at alternative ways to
manage it. One way that already has support for SwiftUI is to use Core Data.

Core Data is Apple’s framework for object graph persistence. Specifically, it
takes on two primary roles: it maintains a graph of interrelated objects,
ensuring the graph remains consistent and valid over time; and it provides
serialization for that object graph in several formats. It’s often thought of as
a “database APL,” but it’s really not; though one of the storage formats uses
SQLite (pronounced ESS-queue-ell-ite, as if it were the name of a mineral), the
vast majority of its code deals with the object graph in memory, and database
support simply provides an expedient way to load and save parts of the
model independently.

In this chapter, you’'ll be working almost entirely with the data layer of your
application. The implementation of user interface features will take a back
seat while you update your application to use a model implemented entirely
in terms of Core Data. Much of the fine detail of Core Data itself has been
provided for you in the starter project for this chapter, since it would be
somewhat outside the bounds of a book on SwiftUI. However, if you’d like to
learn more about Core Data, I'd heartily recommend Core Data in Swift [Zar16].

The starter project for this chapter can by found in the downloadable code
archive for this book' in the p7-starter folder. There are quite a few changes in
here—too many to list the altered files as I've done before. Instead, here’s a
brief overview of what’s been modified:

e First and foremost, there is now a Core Data model in
Resources/Todoltems.xcdatamodeld.

e Files relating to the existing struct-based data model have been moved to
Model/OldModel, and the type names have been changed to TodoltemStruct and
TodoltemListStruct. All the Ul code has been updated to refer to these new
type names.

e The Priority type has been lifted out of TodoltemStruct, and TodoltemList.Color is
now ListColor.

e AppDelegate.swift contains the necessary code to load the Core Data model
(essentially the same as that provided by an Xcode template).

e Several helper routines for the Core Data models have been provided, to
cut down on the code you’ll need to write.

1. https://pragprog.com/titles/jdswiftui/source_code

https://pragprog.com/titles/jdswiftui/source_code
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Integrating a Core Data Model ® 201

e Two new property wrappers have been provided, @DelayedMutable and
@Delayedimmutable.

¢ A preview-specific class, PreviewDataStore, has been added in Preview Content/Pre-
viewDataStore.swift. This manages a CoreData stack purely for the preview
system, recreating its data each time it launches.

I strongly recommend that you use the starter project while working on this
chapter; if not, I suggest you use a diff tool such as Kaleidoscope” to determine
what you'll need to add to your current project to bring it to parity before
continuing,.

You'll take an iterative approach while converting the application, going piece-
by-piece from the smallest leaf views towards the top-level containers, getting
each component working in the canvas before integrating it into its parent
view.

To start with, let’s look at the big picture for a moment, and see how a Core
Data model is brought into the world of SwiftUI.

Integrating a Core Data Model

Open SceneDelegate.swift and locate the line where your Home view is created,
then make these changes:

p7/Do It/SceneDelegate.swift
let context = UIApplication.shared.persistentContainer.viewContext
let contentView = Home()

.environment(\.managedObjectContext, context)

Here you've used some convenience accessors in AppDelegate.swift to fetch a
property from your AppDelegate named persistentContainer. This is an NSPersistentCon-
tainer instance which manages the Core Data “stack” on your behalf—the
model description, the on-disk data store, and the in-memory data context.
From this you're fetching the the managed object context designated for the
use of the user interface, the viewContext. A managed object context provides
the means of interacting with an object graph and its accompanying persistent
store; and since Core Data takes a very serious attitude towards thread
safety, the use of a single context used exclusively for driving the user interface
(and thus synchronized to the main thread) is a particular concern. By sepa-
rating out the UI's context like this, everything that happens to the context
observed by the interface is guaranteed to take place on the main thread.
This has two main benefits:

2. https://www.kaleidoscopeapp.com

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/SceneDelegate.swift
https://www.kaleidoscopeapp.com
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

Chapter 9. Core Data and Combine ¢ 202

e Any Ul updates triggered by changes in the data store are guaranteed to
happen on the main thread, where the UI expects them to happen.

e Any work performed by the UI's object context is likewise guaranteed to
happen on the main thread, meaning it will be properly synchronized with
the Ul framework’s ability to update the interface to match—the model
can’'t change while it’s being drawn.

This view context is passed into SwiftUI through the environment; specifically,
the viewContext is assigned to the environment’s managedObjectContext property.
Other views and even property wrappers in SwiftUI will look for it here.

Note that you are no longer passing the DataCenter into the environment: this
component is going to be replaced in every view, and by removing it from here
you’ll find out very quickly if a view still tries to access it—because your app
will quit!

Core Data Model Objects

At the most basic level, there’s not a lot of difference between a Core Data
object and a value type, from SwiftUI’s point of view. Both contain properties,
and both can be used as a form of state information. For structures, you've
used the @State property wrapper. For Core Data objects, which are class
types, you use @0bservedObject instead. The ObservableObject protocol conformance
is already provided by NSManagedObject, the base type in Core Data from which
all model objects descend. Each property defined in the model thus has a
Publisher available, and any changes made to those properties will cause SwiftUI
to re-evaluate the views that use it.

The first place you'll see this is when updating the to-do item rows. Open
TodoltemRow.swift and change its content:

p7/Do It/TodoltemRow.swift
@0bservedObject var item: TodoItem

- var body: some View {

HStack {

Button(action: {
self.item.complete.toggle()
UIApplication.shared.saveContext()

H A
/] K L »

}

.padding(.trailing, 6)

.buttonStyle(HighPriorityButtonStyle())

VStack(alignment: .leading) {
Text(item.title 2?27 "")

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoItemRow.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

20

-}

Integrating a Core Data Model ¢ 203

.font(.headline)
.foregroundColor(.primary)
.padding(.bottom, 2)

V720 S

On line 1 you now have all the state your row needs—a reference to the
model object representing this to-do item. The DataCenter is gone now, as Core
Data will handle the collection of model objects and their storage and source
of truth for you. Next, the action for the “Complete” button is a lot simpler.
On line 7 the lookup-and-swap process is replaced by a single call to save
the model data. In fact, the toggle() call above this is all that’s necessary to get
the model updated, and this second line exists only to write the new values
to persistent storage.

Only one other line needs to change in this view. On line 15 you're using
Swift’s nil-coalescing operator when assigning the item’s title to the Text view.
This is because, unlike the data model used earlier in the book, all Core Data
model properties (or attributes, to use the correct term) are nullable by default.
This applies to any type that would be represented by an object in Objective-
C—so strings, dates, data, and so forth would all be nullable. Only the values
of primitive types—numbers, booleans—are non-optional in Swift. Now, the
model definition may explicitly state that the title attribute is required, not
optional. That only applies to the logical models used inside of Core Data,
though; it means that the object will be invalid unless it has a title. As far as
the runtime is concerned, though, that value can legitimately be nil. When
you first create a new model object, all its properties will be either nil or some
zero/false value. The object will be invalid until you provide concrete values,
but at runtime you’ll need to handle invalid objects with missing values.

This ultimately leaves you with the burden of deciding what to do with nil
attribute values in your Ul. Here you're just using an empty string if no title
attribute has been set. You'll see plenty of this pattern through the rest of
this book, and you’ll have some fun when it comes time to create non-
optional bindings from these optional values.

Previews

That’s it for the item row—almost. The row view is done, nothing else needs
to change. However, the preview won’'t run at the moment since it's still
written in terms of the old value-type data model. To update it, you'll use a

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 9. Core Data and Combine ¢ 204

custom preview-only data store defined in Preview Content/PreviewDataStore.swift,
which provides a small API for you to use in your view previews:

class PreviewDataStore {
static let shared: PreviewDataStore

let storeCoordinator: NSPersistentStoreCoordinator
let objectModel: NSManagedObjectModel
let viewContext: NSManagedObjectContext

func newBackgroundContext() -> NSManagedObjectContext

var sampleItem: TodoItem
var samplelList: TodoItemList

}

The store is accessed through a single shared instance, which in turn manages
a preview-specific Core Data stack. The persistent data store is deleted and
recreated at each startup, so you’ll always be working with the same sample
data. Update your preview to use this data store and its sample Todoltem:

p7/Do It/TodoltemRow.swift
return TodoItemRow(item: PreviewDataStore.shared.sampleItem)
.padding()
.previewlLayout(.sizeThatFits)
.environment(\.managedObjectContext, PreviewDataStore.shared.viewContext)

Note that the call to .environmentObject() has been replaced by a .environment() call
used to pass in the managed object context from PreviewDataStore.

If you try to run the preview now you’ll see some compilation errors, though,
since the TodoList view is still trying to pass a value-type model object into the
view. For now, you can stop this error by removing the reference to TodoltemRow
within that class: open TodoList.swift and find the call to initialize the TodoltemRow
in that view’s body implementation. Replace it with a simple Text view for now:
NavigationLink(destination: TodoItemDetail(item: item)) {
Text(item.title)
.accentColor(self.color(for: item))

}

Now return to TodoltemRow.swift and launch the preview. Your view renders just
as it did before, looking no different. That may seem anticlimactic, but con-
sidering the changes that have occurred under the hood this is a great out-
come!

Binding to Optional Properties

The next leaf component of the application is the TodoltemEditor view, which
should be just as straightforward as the row view. Things aren’t that simple,

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoItemRow.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

uoA W

Binding to Optional Properties ¢ 205

unfortunately: TextField, Picker, DatePicker and friends all operate on bindings to
state values. Specifically, bindings to String, Date, etc. Looking at the managed
object class—by " 38-clicking on the title property referenced in TodoltemRow.swift,
for instance—and you’ll see again that the properties aren’t quite the same:
String? and Date? types won't work with the simple $-prefix syntax to create
viable bindings.

You'll learn a few different ways of dealing with this type of data in this section.
The item editor references plenty of optional properties, including some which
are genuinely optional within the model, and can legitimately be nil.

To start with, open TodoltemEditor.swift and replace its properties and init(item:)
method:

p7/Do It/TodoltemEditor.swift

@0bservedObject var item: TodoItem
@Environment(\.managedObjectContext) var objectContext
@Environment (\.presentationMode) var presentationMode

The showltem property remains—you’ll still be using that—but the item property
has now been changed from a @Binding to an @ObservedObject, and the DataCenter
instance has been replaced by a reference to the managed object context from
the environment, using the @Environment property wrapper. Alongside this is
a reference to the editor’s presentationMode; you’ll take this opportunity to move
the save/cancel functionality into the item editor in the same fashion you
used for ListEditor in Chapter 5, Custom Views and Complex Interactions, on
page 101,

Nil as an Empty Value
Below the state properties, update the notesEditor property as follows:

p7/Do It/TodoltemEditor.swift
var notesEditor: some View {
TextView(text: Binding($item.notes, replacingNilWith: ""))
.padding(.horizontal)
.navigationBarTitle("Notes: | (item.title ?? localizedNewItemTitle)")

}

There’s not a lot changed in the three lines of the property definition, but
what has changed is quite meaningful. Firstly, the Binding initializer on line 2
has changed. If you scroll up to the top of this file, you’ll see the extension
you created in Chapter 3, Modifying Application Data, on page 57; look at the
definiteNotes property there and recall its behavior. If the value stored in the
model is nil, then an empty string is returned. If an empty string is set as the

new value, then nil is stored in the model. The Binding initializer here is defined

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoItemEditor.swift
http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoItemEditor.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 9. Core Data and Combine ¢ 206

in Affordances/OptionalBinding.swift, itself part of an open-source library by the
author.’ The extension provides three new initializers for SwiftUI's Binding
property wrapper, all of which wrap some small yet nonzero-sized amount of
boilerplate useful when binding to Optional types:

init(_ source: Binding<Value?>, _ defaultValue: Value)
init<T>(isNotNil source: Binding<T?>, defaultValue: T) where Value == Bool
init(_ source: Binding<Value?>, replacingNilWith nilValue: Value)

The first of these methods provides a version of Binding that enforces a default
non-nil value for its target; this is useful for non-optional model properties
that may be set to nil when first initialized. The second wraps the question “is
my target binding’s value nil?” You’ll see this in action shortly.

The third is the one you've used when defining the notesEditor. This performs
the same operations as the definiteNotes property noted above; its parameters
are an underlying binding to a property of some Optional type and a suitable
“empty” value. Here you've provided a binding to the notes property—a Bind-
ing<String?>—and an “empty” value of "', the empty string. The binding wrapper
will silently swap the nil and empty values when accessing the underlying
Binding<String?>.

The compiler will likely be complaining about line 4. Here any potential nil
value from the item’s title property is replaced by a reasonable (and localized)
default (see Non-Optional Optionals below), but that default hasn’t been defined.

Scroll up and add the following private value above the definition of the
TodoltemEditor type:

p7/Do It/TodoltemEditor.swift
fileprivate let localizedNewItemTitle = NSLocalizedString(
"New Item", comment: "default title for new to-do item")

Notice that this uses the NSLocalizedString(_:comment:) method to obtain the
localized value as a String rather than a SwiftUI LocalizedStringKey. This is neces-
sary because the title property is an optional String, so any alternative value
used with the optional-chaining operator must also be a String. With no public
API to obtain a string value from a LocalizedStringKey, falling back to NSLocalized-
String() is the only option.

You might wonder why you're going to some effort to handle a nil value for a todo
item’s title property. After all, you're able to ensure that the value is never nil when it's

report erratum -« discuss

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoItemEditor.swift
https://github.com/AlanQuatermain/AQUI
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Binding to Optional Properties ® 207

supplied to an editor or other view. Certainly that can’t be the case for anything
loaded from the data store, since title is an explicitly non-optional attribute of the data
model. It would seem reasonably save to implicitly unwrap the optional value, using
item.title!, since you have control over the data in every case.

Unfortunately, Core Data’s memory model and SwiftUI's close observance of state
property modifications sometimes find themselves at cross purposes. As an example,
let’s say you're creating a new to-do item, so you have the editor open. You change
your mind, and click “Cancel.” That button deletes the un-saved item from the object
context and dismisses the editor sheet. All clear and good, right?

Alas, no—in between the delete and the dismiss, SwiftUI will detect the change of all
the item’s properties, and will re-render the editor view. The view will still have a
reference to the Todoltem instance, but this will now be a fault—Core Data parlance
for “model object whose values need to be fetched from the store”—so it will attempt
to load its properties. You just deleted it from the store, though, so that carefully
never-nil property is going to return just that, causing your implicitly unwrapped
optional to crash the application.

Binding with Default Values

The next part of the view implementation to changes is the definition of the
body property itself. Inside the existing Form view, update the title field and list
picker like so:

p7/Do It/TodoltemEditor.swift
TextField("Title", text: Binding($item.title, localizedNewItemTitle))

Picker("List", selection: Binding(
$item.list, TodoItemList.defaultList(in: self.objectContext))
) {
ForEach(TodoItemList.allLists(in: self.objectContext)) { list in
Text(list.name ?? "<unknown>")
}
}

For both of these controls, their bindings are defined using the default-value
initializer, init(_ source: Binding<Value?>, _ defaultValue: Value). While neither value
should ever be nil, the type system doesn’t know that, so you provide a non-
optional default to be used if that is the case; the default value will be written
to the underlying binding, in fact, making this a shorter form of object.property
= value; return $object.property. The title field uses the localizedNewltemTitle value you've
seen already, while the list picker uses the default list defined in the data
model. Both the default list and the collection of all available lists need to be

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoItemEditor.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 9. Core Data and Combine ¢ 208

fetched from the view’s object context, so simple functions for these operations
have been provided.

The priority picker is unchanged, but the “Has Due Date” Toggle control needs
to use another optional-value binding:

p7/Do It/TodoltemEditor.swift
Toggle("Has Due Date", isOn: Binding(isNotNil: $item.date, defaultValue: Date()))
.labelsHidden ()

This uses the “is not nil” form of binding, which wraps a pair of operations.
Firstly, its getter simply returns the result of asking “is $item.date.wrappedValue
currently nil?” Its setter, on the other hand, will take a Bool value and parlay
that into an appropriate concrete value for $item.date: false will set it to nil, while
true will set it to the provided defaultValue—in this case, the current date. This
is effectively the same as the hasDueDate property defined at the top of this file,
one of whose two uses you've just replaced.

To update the date picker itself, you’ll take a similar approach:

p7/Do It/TodoltemEditor.swift
if self.item.date != nil {
Toggle("Include Time", isOn: $item.usesTimeOfDay)
HStack {
Spacer()
DatePicker("Due Date", selection: Binding($item.date, Date()),
displayedComponents: item.usesTimeOfDay
? [.date, .hourAndMinute]

.date)
.datePickerStyle(WheelDatePickerStyle())
.labelsHidden ()

Spacer()

}

Here the use of the hasDueDate property is replaced by a simple nil check, while
the binding for the picker’s selection obtains a default value. The picker itself
will only be displayed when the date is explicitly non-nil, but again the Swift
type system doesn’t know that, so a little work is needed to provide a Bind-
ing<Date> rather than a Binding<Date?>. The local showTime state property has
been replaced with a binding to a custom property on Todoltem—Ilook in Mod-
el/CoreDataHelpers.swift to find its implementation.

Safely Handling Model Updates

Core Data is designed to handle multiple discrete operations on the same
data model from a variety of different locations. Data may arrive from the

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoItemEditor.swift
http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoItemEditor.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Safely Handling Model Updates ® 209

network, it may be modified, normalized, or created automatically during
read/write operations, or it could be updated by direct user interaction.
SwiftUI's data-driven interfaces need to interact with all these changes in a
safe and synchronized manner, no matter their cause.

Cancellable User Modifications

There are a few different ways to handle cancellable modifications in Core
Data. The design of the framework is that every model object is part of a
context, and that context loads data from and writes it to a persistent store.
Thus any changes you make to a model object won't actually persist until
you ask the context to save(). Until that point, it’s possible to discard any in-
memory changes and just refresh the object from the persistent store. If the
object is new and has never been saved, you can determine that and just
delete it from the store directly. That has some potential issues, though,
including but not limited to those described in Non-Optional Optionals, on

Amongst other things, the reference-type nature of Core Data model objects
means that the same instance is being used everywhere. With SwiftUI moni-
toring these objects for changes and performing potentially extensive view
updates as a result, operating directly on the same shared instance can lead
to many side-effects and additional work for the framework. It can also make
things a little harder to reason about once your model gets complicated.

For example, consider a later version of the application which stores data
both locally and on a cloud server; perhaps it uses Core Data’s built-in iCloud
support to do so. While you're editing some object—you’ve changed the name
and due date, perhaps—a change to something else comes through from the
network. There are no conflicts, so the change is imported in the background
and passed to the main view context, which is then saved to disk. Now you
decide to cancel your changes, so the object is reverted back to its saved
form—except the entire context it was just saved by someone else, so now
the new title and date are stuck in place.

Core Data provides assistance for this through the concept of hierarchical
contexts. A given object context may be connected to a persistent data store,
or it may be connected to another context. When this context loads, it just
asks its parent context for data. When it saves, it just passes its changes
along to its parent. With this facility available, it's become common practice
to create a new context to associate with an editor, and constrain all changes
to that context alone. Until the editor’s context is saved, the changes are
limited to that context alone—to discard them, you just don’t save them. Once

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

-}

-}

Chapter 9. Core Data and Combine ¢ 210

they are saved, then you tell the parent context to do the same; generally this
task is handled by whatever created the editing context.

This is all building to a single point here: this design provides a nice way to
modularise save/cancel functionality into your model editor views. They
simply operate in terms of the object context fetched from the SwiftUI environ-
ment, and they either save the updated object or not. This means that the
“Done” and “Cancel” buttons’ implementations can now be moved into
TodoltemEditor directly.

Add the following properties above the editor’s body implementation:

p7/Do It/TodoltemEditor.swift
var cancelButton: some View {
Button(action: {
self.presentationMode.wrappedValue.dismiss()
b A
Text("Cancel")
.foregroundColor(.accentColor)

var doneButton: some View {
Button(action: {
try? self.objectContext.save()
self.presentationMode.wrappedValue.dismiss()

H A
Text("Done")
.bold()
.foregroundColor(.accentColor)
}

On lines 3 and 13 you can see the same call to PresentationMode.dismiss() that you
used in Chapter 5, Custom Views and Complex Interactions, on page 101.
When the user chooses to commit their changes, the editor simply instructs
the current context to save(), on line 12. If the current context is connected
directly to a persistent store, then the data will be written out. If it's connected
to another context, then the changes will be sent to that context. The view
that presented the editor will know the details, and will take any necessary

additional action, such as saving the underlying context.

Previewing

To make the preview work, you’ll again need to take two steps. Firstly, update
the preview provider to use the sample Todoltem and install a managed object
context in the environment:

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoItemEditor.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Using Editor Contexts in SwiftUl ® 211

p7/Do It/TodoltemEditor.swift
NavigationView {
TodoItemEditor(item: PreviewDataStore.shared.sampleItem)

}

.environment(\.managedObjectContext, PreviewDataStore.shared.viewContext)

Xcode will likely be complaining about lines in two other files, however: the
initializer for TodoltemEditor has changed. Open TodoList.swift and locate the editor-
Sheet property definition. At the bottom, replace the content of the NavigationView
with an EmptyView. Now open TodoltemDetail.swift and do the same in the editor
property there.

Now your preview should launch, and you’ll be able to test-drive the interface
to ensure everything still works as it did before.

Before moving on, remove the TodoltemStruct extension toward the top of the
file—it isn’t needed any more.

Using Editor Contexts in SwiftUI

In Cancellable User Modifications, on page 209 you learned about the use of
‘editing contexts’ to wall off uncommitted changes from the core data store.
Setting this up is actually quite easy in SwiftUI, as you’ll see: the environment
provides a form of dependency injection, meaning that your editor views
simply operate in terms of the current environment, allowing the parent to
adjust that environment to inject values such as a new managed object con-

text.

You'll put this into action in the item detail view; open TodoltemDetail swift. Start
by updating the state properties as before, deleting the editingltem property
while you're there.

p7/Do It/TodoltemDetail.swift
@0bservedObject var item: TodoItem
@Environment(\.managedObjectContext) var objectContext

@State var showingEditor = false

While you're here, use nil-coalescing operators to fix the errors in headerBack-
ground and body, providing default values for the list color and the item title;
delete the TodoltemStruct extension at the top of the file; and find the errors
identified by Xcode in TodoList.swift where it uses the old TodoltemDetail initializer,
replacing them with an EmptyView. With that out of the way, you can proceed
with the important task of defining and handling an editing context.

There are four operations involved in this design:

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoItemEditor.swift
http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoItemDetail.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

O 00 N O 1 »h W N

o

Chapter 9. Core Data and Combine ¢ 212

* Create a new NSManagedObjectContext, setting its parent as the context found
in the environment.

e Obtain a new instance of this view’s Todoltem from that new context.

e Initialize the editor with the new item, assigning the new context to the
editor’s environment.

e When the editor is dismissed, check if the current context has changes
and save it if so.

Creating the Editor Context
The first three tasks take place in the editor property definition:

p7/Do It/TodoltemDetail.swift
var editor: some View {
let context = self.objectContext.editingContext()
guard let editItem = context.realize(self.item) else {
preconditionFailure("Failed to get edit version of existing item")

}
return NavigationView {
TodoItemEditor(item: editItem)
.environment(\.managedObjectContext, context)

}

On line 2 you create the editing context, using a utility method found in Mod-
el/CoreDataHelpers.swift. If you look at the implementation of editingContext() you'll
see that it simply creates a new NSManagedObjectContext tied to the main thread
(it's going to drive the UI, remember!), and its parent is set to the current
context. That relationship will cause the new context’s save() method to just
propagate any changes to its parent context.

Similarly, line 3 uses another helper method to obtain a copy of the Todoltem,
within the editing context; this uses the identifier of the to-do item to load an
instance of it in the new context.

The remainder is almost unchanged, with the exception of line 8. This line
puts the new editing context into the environment for the editor view. Now
when the editor calls objectContext.save() the changes will be propagated to the
item property of the detail view.

Saving Changes

The fourth operation listed above requires a change to the .sheet() view modifier
in the body property definition; you’ll add new parameter, providing a block
to run when the sheet is dismissed:

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoItemDetail.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Using Editor Contexts in SwiftUl ¢ 213

p7/Do It/TodoltemDetail.swift
.sheet(isPresented: $showingEditor, onDismiss: {
if self.item.hasPersistentChangedValues {
UIApplication.shared.saveContext()

}
}, content: { self.editor })

The only new part here is the onDismiss parameter; this looks at the view’s
Todoltem and asks if it contains any changes that need to be written to the
data store. If it does, then you save the context using a helper method located
in AppDelegate.swift. The hasPersistentChangedValues property specifically looks at
the actual values that are written to permanent storage, ignoring anything
that is calculated dynamically or otherwise transient in nature.

You can now try this out by updating the previews property of TodoltemDetail_Pre-
views at the bottom of this file to use the same parameters and environment
values as before:

TodoItemDetail(item: PreviewDataStore.shared.sampleltem)
.environment (\.managedObjectContext, PreviewDataStore.shared.viewContext)

Launch a live preview and bring up the editor. Make some changes and cancel
or commit them, and observe how the detail view’s content changes.

Rinse and Repeat

The TodoListEditor view needs very similar changes to bring it back to working
order. Open TodoListEditor.swift and replace its state properties:

p7/Do It/TodoListEditor.swift

@Environment (\.presentationMode) private var presentation
@Environment(\.managedObjectContext) private var objectContext
@0ObservedObject var list: TodoItemList

Update the action for the “Done” button to save its object context:

p7/Do It/TodolListEditor.swift
try? self.objectContext.save()
self.presentation.wrappedValue.dismiss()

And lastly provide some defaults for the optional icon and name attributes:

p7/Do It/TodolListEditor.swift
Image(systemName: list.icon ?? "list.bullet")

TextField("List Title", text: Binding($list.name, "New List"))
IconChooser(selectedIcon: Binding($list.icon, "list.bullet"))

Don't forget to update the preview to try it out.

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoItemDetail.swift
http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoListEditor.swift
http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoListEditor.swift
http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoListEditor.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 9. Core Data and Combine ® 214

Displaying Lists

Up to now, you've only dealt with one Core Data model object at a time, and
that object has always been handed into the view you're working on. To
implement the TodoList, Home, and HomeHeader views, however, you need to learn
how to obtain and interact with groups of objects. In TodoList you’ll have the
additional burden of managing sort ordering, so let’s start with the more
straightforward views first.

Start by opening Home.swift and adding this property near the top of the Home
implementation:

@FetchRequest<TodoItemList>(
sortDescriptors: [
NSSortDescriptor(keyPath: \TodoItemList.manualSortOrder,
ascending: true)

D

var lists

Here you've used a new property wrapper from SwiftUI named @FetchRequest.
This provides the primary means by which Core Data objects are brought
into a SwiftUI interface, and its wrapped value resolves to a collection of Core
Data result types, such as model objects. Each @FetchRequest ultimately wraps
a Core Data NSFetchRequest, which itself encapsulates a return type, a sort
order, a predicate used to select and filter objects, and more. Internally,
@FetchRequest properties monitor the object context installed in the SwiftUI
environment to determine when changes occur that affect the objects vended
by this property. When that happens, SwiftUI is able to trigger an interface
update to present the new data automatically.

Here you're using an attribute syntax you've not seen before. The FetchRequest
type implementing the attribute takes initialization parameters itself, so you
need to pass those in explicitly as you would for a regular type initializer. The
simplest initializer it provides takes an instance of a Core Data NSFetchRequest,
but here you only want to specify a type and a sort order, so creating a fetch
request manually is a lot of work. Instead you're using another initializer
taking only an NSSortDescriptor used to indicate the desired sort ordering, and
the type of object you want to obtain is defined by the generic type parameter,
<TodoltemList>.

Even this syntax is rather long, though; to fit within the 80-column space for
this book it’s been spread over five lines. For this reason, let’s make use of a
convenience initializer from Model/CoreDataHelpers.swift to reduce the amount of
typing involved:

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

vy

Displaying Lists ® 215

p7/Do It/Home.swift
@FetchRequest<TodoItemList>(ascending: \.manualSortOrder)
var lists

That’s better. The model object is specified in the generic type parameter, and
with that set Swift only needs the key subpath to build the KeyPath.

Updating List Content

Now it’s time to turn your attention to the view’s body. The list property works
just like a regular Swift collection, so it can be passed directly into the ForEach
initializer. You'll also need to provide non-nil values for the list name and icon,
as with all Core Data model objects:

p7/Do It/Home.swift
ForEach(self.lists) { list in
NavigationLink(destination: TodoList(list: list)) {

Row(name: list.name ?? "<Unknown>",
icon: list.icon ?? "list.bullet",
color: list.color.uiColor)

}
}

Xcode likely complains about the TodoList() initializer at this point; until you've
updated that class as well, just replace it with an EmptyView to keep the com-
piler happy, and move on.

Deleting

The onDelete() and onMove() modifiers are next on the list. Deletion in Core Data
is handled by passing the object to be deleted to its object context’s delete()
method. Once that’s done, you need to call save() on the context to actually
delete the object from persistent storage.

To do this, you'll need to have access to the object context; add the familiar
environment property to the Home implementation to obtain it:

p7/Do It/Home.swift
@Environment(\.managedObjectContext) var objectContext

Since you're doing these two operations in a row, it’s a good idea to keep them
synchronized with one another; ideally you want to only delete this object,
without saving some other change happening at the same moment. NSManage-
dObjectContext provides two methods to perform this sort of synchronization:
perform(_:) and performAndWait(_:). These function similarly to DispatchQueue’s async(_:)
and sync(_:) methods—the first will run the supplied block asynchronously
and return immediately, while the second will block the calling thread until

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/Home.swift
http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/Home.swift
http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/Home.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 9. Core Data and Combine ® 216

the block has finished running. The object context used in the Ul is tied to
the main (UI) thread, so the work will always execute on that thread, nicely
synchronized with respect to any user interface updates.

In this case, you don’t need to do anything immediately after the change, so
you’ll use perform(). Replace the existing .onDelete() implementation with this
new version:

p7/Do It/Home.swift
.onDelete { offsets in
self.objectContext.perform {
for offset in offsets {
self.objectContext.delete(self.lists[offset])
}

try? self.objectContext.save()

}

Note that, since all the Core Data operations are synchronized with the Ul
thread, you can simply reach into the lists property by index, deleting each
item. As the delete doesn’t actually remove anything from memory until you
save the context, neither do you need to iterate through the offsets backwards
to ensure the indices remain correct. Similarly, while you're inside the perform()
block, SwiftUI can’t update the content of the lists property—it will have to
wait until you finish iterating and deleting all the indicated objects.

Threading can be difficult at times, but once you get it right it makes things
so much easier!

Reordering

Moving and ordering is a little different, however. By default, all collections
in Core Data are considered unordered. You impose a specific ordering on
them through the use of an NSSortDescriptor when fetching them from the data
store (in fact, the @FetchRequest wrapper outright requires a sort descriptor).
This means that you can’t just shuffle items around inside a flat array any
more; you're going to have to take a different approach.

If you've inspected the object model—or if you raised an inquisitive eyebrow
at TodoltemList.manualSortOrder when defining the fetch request earlier—then you
likely see how this is going to be handled. In fact, both the Todoltem and
TodoltemList objects have integer attributes named manualSortOrder. This enables
you to sort them easily based on that attribute’s value—precisely what the
list property is doing in this view. To change the order of the items, then, you
need only change the numbers used to order them.

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/Home.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Displaying Lists ® 217

Let’s look at the new .onMove() implementation:

p7/Do It/Home.swift
.onMove { offsets, index in
var newOrder = Array(self.lists)
newOrder.move(fromOffsets: offsets, toOffset: index)
self.objectContext.perform {
for (index, list) in newOrder.enumerated() {
list.manualSortOrder = Int32(index)
}

try? self.objectContext.save()

}

Here you've created a copy of the list property in an Array, and used SwiftUI's
handy move(fromOffsets:toOffset:) method to rearrange its contents. Next, within
another object context perform() block, you enumerate the contents of this
array and assign each item a new manualSortOrder equal to its location in the
array, thereby providing an ascending order. When the context is saved, the
list property will automatically update and the view will be updated to show
the lists in their new positions.

Creating New Items

Not much changes when creating new model objects with Core Data. The key
point to remember is that all such objects are created within a particular object
context. To illustrate, consider the TodoltemList.newList(in:) method in Model/Core-
DataHelpers.swift:

p7/Do It/Model/CoreDataHelpers.swift

static func newList(in context: NSManagedObjectContext) -> TodoItemList {
let list = TodoItemList(context: context)

list.name = NSLocalizedString("New List", comment: "Default title for new
list.icon = "list.bullet"
list.color = .blue

list.manualSortOrder = Int32(listCount(in: context))
return list

}

Note that the TodoltemList initializer requires a reference to the object context
in which it will live. The remainder of the implementation, though is
straightforward: some default values are assigned for all the non-optional (in
the model-definition sense, not the language-property sense) properties.

Aside from that, not much has changed from the struct-based implementation;
once the new object is created, it can be displayed in an editor. Here again
you would create a child object context to place into the editor’s environment,
creating the new list within that context. You would also add an onDismiss

lists")

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/Home.swift
http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/Model/CoreDataHelpers.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Yvy

Chapter 9. Core Data and Combine ¢ 218

callback to the .sheet() view modifier to save the local object context when the
sheet is dismissed. The result should look something like this:

p7/Do It/Home.swift
var body: some View {
NavigationView {
V2 P
}
.sheet(isPresented: $showingEditor,
onDismiss: { try? self.objectContext.save() },
content: { self.newListEditor })

}

private var newListEditor: some View {
let context = objectContext.editingContext()
let list = TodoItemList.newList(in: context)
return TodoListEditor(list: list)
.environment(\.managedObjectContext, context)

}

Update the preview provider to place PreviewDataStore.shared.viewContext into the
environment, and check out the results on the canvas.

The model definition will enforce validity when objects are saved to the persistent
store, so a list with no name, for example, will only raise an error during the call to
save(). The examples you've seen so far have been generally ignoring these errors for
the sake of expediency, using try? and ignoring the result. In practice, this is far from
ideal. Imagine the situation: one editor makes an invalid change to one object, so the
save fails—but the invalid object remains in the context. From that point on, every
call to save() that context will fail, because it will include that invalid object.

It is possible to handle these issues more gracefully than is shown in the example
code. For instance, when the user clicks “Done” in an editor, the object can be
explicitly validated by calling validateForUpdate()(). If the object is invalid, an error will
be raised with lots of helpful information attached. That can then be used to present
a dialog to the user instead of merely closing the sheet.

Aside from looking at direct validation, it’s also good to catch and inspect all errors
whenever they occur. Core Data’s errors are particularly full of useful information,
and will almost always lead you directly to a solution. While expediency (and page
count!) necessitates a more cavalier approach in this book, you can find an example
of some simple error handling in AppDelegate.swift, in saveContext().

report erratum -« discuss

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/Home.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Dynamically Sorting Collections ® 219

Dynamically Sorting Collections

So far you've worked with individual model objects, both displaying and
editing them. All these objects have either been provided as parameters or
fetched from the data store using a static request and sort order. SwiftUI
provides enough tooling for those operations, but stepping beyond them
requires somewhat more vigilance. For instance, how does one change the
sort order of a collection loaded through a @FetchRequest property? Well... one
doesn’t; it isn’t possible to reach inside the property wrapper to update its
request’s parameters. Nor is it possible to keep the underlying NSFetchRequest
around to mutate it on demand, because @FetchRequest copies its input rather
than retaining it.

To solve this issue, you'll make use of a new @MutableFetchRequest wrapper,
located in Affordances/MutableFetchRequest.swift, also a part of the author’s open-
source toolset®. This will provide you the ability to swap out the underlying
NSFetchRequest dynamically, in turn driving many of the features of the TodoList
view.

First, though, some book-keeping is required. The SortOption type needs to be
updated to think in terms of Core Data. Since a fetch request uses an array
of NSSortDescriptors to define the ordering of its result, you will need to provide
that array, and the most prudent way to do that is to have the SortOption vend
it directly. Open TodoList.swift and add the following computed property to Sor-
tOption:

p7/Do It/TodoList.swift
var sortDescriptors: [NSSortDescriptor] {
switch self {
case .title:
return [NSSortDescriptor(keyPath: \TodoItem.sortingTitle,
ascending: true)]
case .priority:
return [NSSortDescriptor(keyPath: \TodoItem.rawPriority,
ascending: false)]
case .dueDate:
return [NSSortDescriptor(keyPath: \TodoItem.date,
ascending: true)]
case .manual:
return [NSSortDescriptor(keyPath: \TodoItem.manualSortOrder,
ascending: true)]

4. hub.com/AlanQuatermain/AQUI

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoList.swift
https://github.com/AlanQuatermain/AQUI
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

Chapter 9. Core Data and Combine ¢ 220

Each sort option now provides a set of sort descriptors, specifying what
model value should be compared to create the sort order, and whether higher
or lower values should come first. Most use an ascending order—A to Z, past
to future—though the priority ordering is the reverse, since the highest prior-
ity items should be most prominent.

Within the priority and dueDate cases, however, it’s possible there will be duplicate
values. More than one item of normal priority, for example, or two items due
on the same day. In those cases, there is no clear guarantee of the relative
ordering of these items; it all depends on what the underlying storage format
happens to use. It would be better to provide a secondary option in those
cases, so update the results for .priority and .dueDate to include the sort
descriptor from .manual as a second element in the array.

Now look at the ListData type at the top of TodoList; this is still using the old data
types, so you’'ll need to update it. At the same time, add a reference to the
managed object context from the environment and declare the @MutableFetchRe-
quest property that will provide your to-do items:

p7/Do It/TodoList.swift

private enum ListData {
case list(TodoItemList)
case items(LocalizedStringKey, NSFetchRequest<TodoItem>)
case group(TodoItemGroup)

}

@Environment (\.managedObjectContext) var objectContext

- @State private var listData: ListData
- @MutableFetchRequest<TodoItem> var items: MutableFetchedResults<TodoItem>

Line 1

10

Note that the items property on line 10 isn’t initialized. Unlike the @FetchRequest
you used in Home.swift, this hasn’t been given a fetch request or sort descriptors,
and thus is only a declaration, not a definition. To give it a value, you’ll need
to update your initializers:

p7/Do It/TodoList.swift

init(list: TodoItemList) {
self. listData = State(wrappedValue: .list(list))
let request = list.requestForAllItems
request.sortDescriptors = SortOption.manual.sortDescriptors
self. items = MutableFetchRequest(fetchRequest: request)

}

init(title: LocalizedStringKey, fetchRequest: NSFetchRequest<TodoItem>) {
let request = fetchRequest.copy() as! NSFetchRequest<TodoItem>
request.sortDescriptors = SortOption.manual.sortDescriptors
self. listData = State(wrappedValue: .items(title, request))

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoList.swift
http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Dynamically Sorting Collections ® 221

self. items = MutableFetchRequest(fetchRequest: request)

-}

15

20

init(group: TodoItemGroup) {
self. listData = State(wrappedValue: .group(group))
let request = group.fetchRequest
request.sortDescriptors = SortOption.manual.sortDescriptors
self. items = MutableFetchRequest(fetchRequest: request)
}

Each initializer still corresponds to a single form of ListData, but now these
values are also used to generate the fetch request required to initialize the
items property (or more properly, the _items property). In every case, the initial
sort descriptors are those for SortOption.manual.

The first two initializers are quite direct: the first uses a helper property to
obtain a request for all the items in the list; the second copies the input fetch
request. The third is a little more involved, obtaining its fetch request from
the attached TodoltemGroup. Item groups all contain quite complex sets of items,
though: anything with a date; anything with a date in the past; anything due
today that hasn’t been completed. These are all more complex than the other
requests you've used so far, so let’s take a look at how they work.

Open Affordances/ltemGroups.swift and scroll to the bottom to find the fetchRequest
property. This creates an NSFetchRequest for the Todoltem type, specifies that
items should be loaded from storage in batches of up to 25 at a time, and
then assigns a predicate. Predicates are instances of NSPredicate, which is a
base class defining an interface whereby a single object can be inspected for
conformance to a set of rules. These might be name == "Henry", identifier IN (22, 23,
29), and so on—to an SQL veteran, they should look vaguely familiar. These
are both instances of comparison predicates, which compare some property
against some value. There are also compound predicates, which can require
all, some, or none of a set of smaller predicates to evaluate as true. By com-
bining these types, just about any set of criteria can be expressed, including
those implied by the TodoltemGroup values cited above.

Just above fetchRequest is the implementation of the fetchPredicate property, which
has one case filled out, for .today. This is defined using the predicates API
rather than format strings because, well, that’s generally a good habit to get
into (parsing the format argument is relatively expensive and should be done
only when strictly necessary). The .scheduled, .overdue, and .all cases currently
return nil, though; let’s fix that.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

Chapter 9. Core Data and Combine ¢ 222

Using Predicates

For the .scheduled case, you need to locate any items that have a date set.
Alternatively, by turning that clause around, you arrive at “any items whose
date is not nil.” That can be easily expressed with a format string:

NSPredicate(format: "date != nil")

The .overdue case can be handled with a similarly straightforward clause, this
time with a parameter:

NSPredicate(format: "date < %@", Date() as NSDate)

Note that the parameter is explicitly typed as an NSDate instance; trying to
pass a Swift Date will raise an error in Xcode.

The .all case is the simplest, it turns out: it doesn’t need to change at all, since
you genuinely want all the Todoltem instances from the data store.

For extra credit, can you implement these in a similar manner to the .today
case, using the API rather than a string? The final project code for this
chapter includes an example of the correct way to do this.

The upshot of having your filtering and sorting take place inside the fetch
request is that you no longer need to perform any sorting yourself. Return to
TodoList.swift and remove the sortedltems variable—you’ll replace it shortly—and
replace all uses of sortedltems with items, like so:

p7/Do It/TodoList.swift
ForEach(items) { item in
NavigationLink(destination: TodoItemDetail(item: item)) {
TodoItemRow(item: item)
.accentColor(self.color(for: item))

}

While you're here, you’'ll note that you can restore the TodoltemRow initializer,
since both views now use Core Data model objects.

Dynamically Updating Fetch Requests

To change the sort descriptors in your @MutableFetchRequest property, you'll need
to proactively the new sort descriptors and replace them within the property
wrapper. Scroll down to the now-empty extension labeled “Sorting” and add
a new function:

p7/Do It/TodoList.swift
private func updateSortDescriptors(_sortOption: SortOption) {
let request = self. items.fetchRequest

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoList.swift
http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

-}

Dynamically Sorting Collections ® 223

if case .group(.all) = self.listData, case .manual = sortOption {
let listOrder = NSSortDescriptor(key: "list.manualSortOrder",
ascending: true)
request.sortDescriptors = [listOrder] + sortOption.sortDescriptors

}
else {

request.sortDescriptors = sortOption.sortDescriptors
}

self. items.fetchRequest = request

This method performs three tasks:

* On line 2 it obtains the current NSFetchRequest from the _items property

(recall that placing an underscore before the property name will let you
access the wrapper rather than the content).

It assigns the new sort descriptors based on the input SortOption. Note that
there is an additional sort descriptor added on line 5 if the TodoList is
showing all items with a manual sort order: it first orders items by their
list’s manual ordering, to group them together visually.

Lastly, the updated NSFetchRequest is placed back into the @MutableFetchRequest
property wrapper on line 11, which will cause the list content to change
and SwiftUI to re-render the view.

Now that you have this method in place, you need to call it. Locate the .alert()
modifier in the body property. Delete the assignment to self.sortBy and replace
it with a call to the function you just created.

The remaining steps necessary to adapt the TodoList to use Core Data should
all be familiar by this point:

1.

Add an onDismiss parameter to the .sheet() modifier to save the object context
when the sheet is dismissed.

Remove lines referencing any removed properties, such as editingltem.
Replace any remaining uses of the old struct-based model types with their
new Core Data versions.

Handle optional properties within your model objects, either using
implicit unwrappind or nil-coalescing operators.

Update the removeTodoltems() and moveTodoltems() implementations using the
approaches from Deleting, on page 215 and Reordering, on page 216
respectively; the other properties and methods in the “Model Manipulation”
Change the implementation of presentEditor(of:) to use an editing context,
similar to the implementation used in TodoltemDetail in Creating the Editor
Context, on page 212.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

Chapter 9. Core Data and Combine ¢ 224

7. Update the content of the editorSheet computed property to use an editing
object context.

The editor sheet update will use methods from Model/CoreDataHelpers.swift to create
a new Todoltem and to locate a suitable list. If this view is displaying a single
list, then that would be used; otherwise, the default list is fetched using
TodoltemList.defaultList(in:):

p7/Do It/TodoList.swift
private var editorSheet: some View {
let editContext = objectContext.editingContext()
let editlList: TodoItemList
if let list = self.list {
editList = editContext.realize(list)!

}
else {

editList = TodoItemList.defaultList(in: editContext)
}

let editingItem = TodoItem.newTodoItem(in: editlList)

return NavigationView {
TodoItemEditor(item: editingItem)
.environment(\.managedObjectContext, editContext)

-}

Dynamically Monitoring Metadata

The remaining view has a requirement that’s difficult to model with the tools
you've used so far. Each Headerltem view needs to display a counter showing
the number of items that match; for example, the number of items due today,
or the number overdue. This could be implemented using an @FetchRequest
and simply accessing the resulting collection’s count property, but that involves
a lot more work than is strictly necessary. If you've used SQL, for instance,
you know that it’s easier to request how many items there are than to fetch
something from each one. The same is true in Core Data, and NSManagedObject-
Context provides a helper routine for just that purpose: count(for:) takes an
NSFetchRequest and returns an Int describing how many objects match, without
actually loading any data.

To implement this behavior in a suitably lightweight manner, let's use the
Combine framework to create an operation on top of a notification issued by
Core Data. Specifically, when an object context is saved, it posts a notification
named NSManagedObjectContextDidSave; you can ask the system NotificationCenter to
provide a Publisher that vends these notifications when they occur, and then
attach further operations to ultimately vend a counter value.

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/TodoList.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Line 1

20

Dynamically Monitoring Metadata ¢ 225

To start, you'll need to add some new state. Open HomeHeader.swift and add
import statements for Combine and CoreData to the top of the file. Next add
the following properties to the Headerltem type:

p7/Do It/HomeHeader.swift
@Environment (\.managedObjectContext) var objectContext
@State private var countCancellable: AnyCancellable? = nil

The second property here is a Combine type that acts as a cancellation and
continuation token for a publisher. Its purpose is twofold: firstly, it provides
a way to explicitly shut down a publisher by providing a cancel() method. Sec-
ondly, its existence will keep the publisher alive until you either cancel it or
discard the Cancellable instance (which will cancel on your behalf).

Watching Notifications

To start and stop monitoring the matching item count, you’ll need to create
a publisher and cancel it, respectively. Add these methods to Headerltem to
implement this:

p7/Do It/HomeHeader.swift
private func startWatchingCount() {
guard countCancellable == nil else { return }

let request = group.fetchRequest
countCancellable = NotificationCenter.default
.publisher(
for: .NSManagedObjectContextDidSave,
object: objectContext)
.receive(on: RunLoop.main)
.compactMap { $0.object as? NSManagedObjectContext }
.tryMap { try $0.count(for: request) }
.replaceError(with: 0)
.removeDuplicates()
.assign(to: \.itemCount, on: self)

if let count = try? objectContext.count(for: request) {
itemCount = count

}

- private func stopWatchingCount() {

countCancellable = nil

}

Here you've obtained an initial publisher using NotificationCenter’s publish-
er(for:object:) method. On line 9 you ensure that any events from the publisher
are delivered on the main runloop, to properly synchronize with the user
interface. Every following operation will take place on the main thread.

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/HomeHeader.swift
http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/HomeHeader.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 9. Core Data and Combine ¢ 226

The following operator, .compactMap(), will attempt to fetch the managed object
context from the notification. If it fails (i.e. returns nil), then nothing more will
happen—the following operations are guaranteed to receive a non-nil NSMan-
agedObjectContext instance. This is then used by the .tryMap() operator to call
count(for:).

The publisher at this point might vend either an Int or an Error. To handle—well,
guard against—the latter, line 12 uses the replaceError(with:) operator to catch
any errors and publish an Int value instead; in this case 0. A removeDuplicates()
operator then ensures that events will only be published if they actually vend
a different value than their previous output.

Lastly, the assign(to:on:) operator will take that value and assign it to the itemCount
state property, thus triggering SwiftUI to perform a view update. With this in
place, any changes to the content of the data store will automatically trigger
a view update to display the new value. There’s one final importand step,
however, which is (for your humble author at least) quite easy to overlook:
setting the initial value, which happens on line 17. Without this, the counter
would read 0 until something somewhere was modified, which certainly led
to some confusion while writing this chapter...

Choosing the Right Moment

Ordinarily, SwiftUI will respond to any state variable update at any location
in the view hierarchy. For instance, if you drilled down from the home view
into a list, then created a new item, then upon saving that item the counter
in one or more ltemHeader instances would update. SwiftUI would then redraw
them, despite their being offscreen.

In this particular case the property is fairly innocuous—the state property is
only used to set the content of a Text view—but other property updates might
have unexpected knock-on effects. What would happen if these items were
interactive only when their count was non-zero, perhaps by removing their
NavigationLink, or by setting a different destination view? If the user tapped on
“Overdue” and either deleted everything there or marked them complete,
would the current view disappear? Be replaced by a different view? Stay on
screen until the user exited? If the latter, would interactions with this view’s
contents still work?

Where possible, it’s useful to think about when it’s appropriate to update
your state variables and thus trigger a view redraw. Having some parent view
change further up the navigation stack in some unexpected manner might
lead to some strange behavior or even bugs, so it’s useful to know how to

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Yy

Line 1

O ©® N O U A W N

Dynamically Monitoring Metadata ¢ 227

disable these effects. To illustrate this, let’s start and stop monitoring the
item count changes when the view appears and disappears:

p7/Do It/HomeHeader.swift
var body: some View {
VStack(alignment: .leading) {
VIS S

}
.padding()
.background (
RoundedRectangle(cornerRadius: 15, style: .continuous)
.fill(Color(.tertiarySystemBackground))
)
.onAppear (perform: startWatchingCount)
.onDisappear(perform: stopWatchingCount)

}

With these two lines, you've arranged for the publisher to only be active while
the item header is actually visible. As soon as it goes offscreen—for instance
when the user selects either a header item or a list—then the publisher will
be cancelled. When the view returns, it will be recreated.

Finalization

You're almost done with your conversion now; only a little of the HomeHeader
itself remains to be updated. You'll need to change the content of the inner
ForEach class to properly define the navigation links. It turns out (whether by
design or bug) that SwiftUI doesn’t automatically pass on the entire environ-
ment to the destination of a NavigationLink. This works for items within the body
of a List, but for this header you’ll have to do it yourself. This becomes more
manageable with a little refactoring.

First, add the following to the HomeHeader definition:

p7/Do It/HomeHeader.swift
@Environment (\.managedObjectContext) var objectContext

private func linkView(for group: TodoItemGroup) -> some View {
let destination = TodoList(group: group)
.environment (\.managedObjectContext, objectContext)
return NavigationLink(destination: destination) {
HeaderItem(group: group)
}
}

That factors out all the necessary work to pass on the object context to the
destination of the NavigationLink, leaving only one small change to the view’s
body:

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/HomeHeader.swift
http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/HomeHeader.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

Chapter 9. Core Data and Combine ¢ 228

p7/Do It/HomeHeader.swift
var body: some View {
VStack {
ForEach(Self.layout, id: \.self) { row in
HStack(spacing: 12) {
ForEach(row, id: \.self, content: self.linkView(for:))

}

}

Now take a quick look through the application and ensure that all the navi-
gation links are correctly updated to point to the right views once more, then
launch the app and try it out. The experience should match exactly what you
had at the end of the previous chapter—conversion successful!

What You Learned

There are many nuances required when dealing with Core Data in SwiftUI.
Several times in this chapter you've reached out to new and updated types
just to make it all a little more manageable. Now, though, you have experience,
and the scars to prove it.

¢ You can attach a new Core Data model to an existing application.

* You know how to pass Core Data model objects through a SwiftUI view
hierarchy.

e Several complex tasks have become simpler at the callsite through the
use of facilities like NSSortDescriptor and NSPredicate, saving you the effort of
implementing sorting and matching algorithms in multiple places.

e Similarly, implementing NSltemProvider support is now significantly easier.

e Creating bindings to optional types is actually straightforward, now that
you know how it’s done.

e The @FetchRequest property wrapper can significantly help to manage
dynamic collection views.

e When you need a little more dynamism than @FetchRequest provides, you
have the tools to go deeper, whether via notifications and publisher data
flows, or through more complex tools such as @MutableFetchRequest.

It’s been a long journey, but you've now worked with everything SwiftUI has
to offer on iOS and iPadOS. Still more awaits in macOS, watchOS, and tvOS,
but the broad strokes are the same, and it should all look quite familiar to
you at this point.

You're ready to take the next steps on your own, and there’s going to be
plenty more for you to work with soon enough. Remember that this is only

http://media.pragprog.com/titles/jdswiftui/code/p7/Do It/HomeHeader.swift
http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

What You Learned ® 229

the first public release of SwiftUI, and it will grow to encompass more possi-
bilities as time goes by. It’s all just starting, and now you get to say: you were
there.

http://pragprog.com/titles/jdswiftui/errata/add
http://forums.pragprog.com/forums/jdswiftui

The Pragmatic Bookshelf

The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online

This Book’s Home Page
https://pragprog.com/book/jdswiftui
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date

https://pragprog.com

Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book

If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us

Online Orders: https://pragprog.com/catalog
Customer Service: support@pragprog.com
International Rights: translations@pragprog.com
Academic Use: academic@pragprog.com
Write for Us: http://write-for-us.pragprog.com
Or Call: +1 800-699-7764

https://pragprog.com/book/jdswiftui
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Change History
	B1.0: Monthname xx, yyyy

	Acknowledgments
	Introduction
	A Little UI API History
	The Declarative UI Paradigm
	Example Application

	1. Layout and Presentation
	Getting Started
	Learning the SwiftUI Basics
	Working with Layout & Composition
	Handling Data Presentation
	Adding Navigation
	What You Learned

	2. Application Data in SwiftUI
	Interaction in Lists
	Handling User Input
	Nesting Data
	Dynamically Ordering List Contents
	Crafting a Full-Screen View
	What You Learned

	3. Modifying Application Data
	Data Flow in SwiftUI
	Using the Environment
	Building an Editor
	Presenting Modal Views
	What You Learned

	4. List Mutation
	Using Sections and Header Views
	Modifying List Data
	Manually Following Changes in Data
	What You Learned

	5. Custom Views and Complex Interactions
	Creating Custom Controls
	Creating View Modifiers
	Custom Button Styling
	Working with Anchors
	Creating and Using Gradients
	Passing Data with View Preferences
	Building a Single-Choice Control
	Dealing with Multiple Preference Values
	Composing the Final Interface
	What you Learned

	6. Making the Most of the Canvas
	Handling Size and Appearance
	Using Multiple Previews
	Supporting Dark Mode and Light Mode
	Using Device Previews
	Supporting Dynamic Type
	Understanding SwiftUI’s Layout System
	Previewing Localizations
	What You Learned

	7. SwiftUI on iPadOS
	Introducing iPadOS
	Popovers
	Multiple Scenes
	Keyboard Commands
	Pointing Devices
	What You Learned

	8. Implementing Drag and Drop
	Understanding Item Providers
	Dragging Out
	Dragging In
	Dragging New Scenes
	What You Learned

	9. Core Data and Combine
	Integrating a Core Data Model
	Binding to Optional Properties
	Safely Handling Model Updates
	Using Editor Contexts in SwiftUI
	Displaying Lists
	Dynamically Sorting Collections
	Dynamically Monitoring Metadata
	What You Learned

