Secret Sauce

How to use or duplicate Apple’s private functionality

by Jim Dovey

ii

Copyright ©2010-2011 Jim Dovey. Some Rights Reserved.

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. You are free to copy, distribute, and transmit the
work, or to adapt the work, provided you adhere to the following conditions:

o Attribution: You must attribute the work to Jim Dovey.
¢ Noncommercial: You may not use this work for commercial purposes.

e Share Alike: If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same or similar license to this
one.

Any of the above conditions can be waived by permission of the copyright holder.

This license in no way affects the following rights:

e Your fair dealing or fair use rights, or other applicable copyright exceptions
and limitations;

e The author’s moral rights;

e Rights other persons may have either in the work itself or in how the work is
used, such as publicity or privacy rights.

The full text of the copyright license can be found here: http://creativecommons.
org/licenses/by-nc-sa/3.0/legalcode

This document was written and typeset using TEX 2¢.

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

Preface

Apple does some rather cool things in OS X. Many are poorly if at all
documented, but can still be duplicated by others, given a little time and
effort. Some things we can figure out and implement for ourselves, some
work in a way that allows us to hook into them cleanly, and some require the
use of more illicit methods, or directly linking against private (and therefore
highly mutable) APIs.

This book aims to show the guts of a few elements of OS X which can’t be
easily reproduced or activated. Some will be complex tasks which require
some in-depth knowledge of system behaviour, some will be those which
would otherwise require some reverse-engineering know-how to discern. After
reading this book, you should be able to implement for yourself some of
Apple’s ‘black magic’ features, and should have a good idea of how to go
about learning more.

This book is split into five chapters:

Chapter 1 tells you about some of the underlying technologies used in Mac
0OS X and some of the tools you can use for system and software intro-
spection; it effectively forms the ‘starting point’ for the other examples.
After reading this chapter, you should have a fair understanding of
the techniques underlying the discovery and implementation of the
following examples.

Chapter 2 starts the exposition with a bang, taking us to the lowest levels
of the operating system to investigate how the crash reporter works.
After reading this chapter you will be able to write a working crash
reporter of your own, or possibly even replace the default system
reporter.

iv Preface

Chapter 3 introduces the OS X Managed Client system, MCX, known
under the moniker of ‘parental control’ on OS X desktops. After
reading this item you will be able to take advantage of MCX at a local
level (i.e. without requiring a copy of OS X Server) and will be able to
integrate some of its functions into your own applications.

Chapter 4 covers the guts of the authentication system, in particular the
means in which login and fast-user-switching are implemented. After
reading this chapter you should be able to create advanced multi-stage
authorization tasks with their own user interfaces; you may even be
prepared to take on the task of replacing the OS X login window
altogether. . .

Chapter 5 closes out the book with information on one of the juiciest
private APIs in OS X: the Time Machine user interface. After reading
this chapter, you should be able to have your application’s user interface
interact directly with the Time Machine system in a manner similar to
the iPhoto or Address Book applications.

The book is designed such that each chapter functions as a self-contained
tutorial, so you are free to skip directly to the topic that interests you most.
However, it is recommended that you begin with Chapter 1 in order to get a
thorough grounding in some of the underlying system details. In many cases,
it was this knowledge which enabled me to search out much of the rest of
the content of this book.

Each topic will present some information on standard system components
in a general manner, in order to educate about the workings of the system.
A goal of this approach is that you should know enough to understand the
nuances of the topic enough to make discoveries or uses of your own. Once
that is done, I will show how to make use of that information toward the
specific aim of the chapter or section.

If there is some task or subsystem in particular that you would like to see
explored in future revisions of this book, please let me know. The current
content is based on my own rather focussed experience, which for instance
does not involve a lot of user-facing applications. I would be very interested
to find out just what sort of itches people need to scratch, and which of
Apple’s fancy tricks they would like to replicate, and I am always on the
lookout for new challenges. Also, I may end up making additions myself,

for example there may in future be a description of AppleTV API hacking
and the like, which I'm sure would be interesting to one or two people out
there. . .

Jim Dovey <jimdovey@mac.com>

Toronto, ON
Canada
December 11, 2010

mailto:jimdovey@mac.com

Contents

Preface

1 Groundwork

1.1.2 Accessing Services L.
1.1.3 The Mach Interface Generator
1.1.4 Putting The Knowledge To Use
1.2 User Profile Data
1.2.1 Directory Services
1.2.2 Exploring Open Directory
1.3 Authorization L
1.3.1 Authorization vs. Authentication
1.3.2 Obtaining Authorization
1.3.3 Behind the Scenes

1.4 Summary e

iii

viii CONTENTS

2 Crash Reporting 23
2.1 When Things Go Wrong... 23
2.2 Catching A Crash, 25

2.2.1 Signals and Exceptions. 25
2.2.2 Catching Mach Exceptions 25
223 TaskDeath 31
2.2.4 Running the application 33
2.3 Exception Handling 33
2.3.1 Implementing Mach Exception Handlers 33
2.3.2 Backtracing Lo 39
24 Summaryo e e e e 43

3 Managed Client 45

31 MCX e 45
3.1.1 What is MCX? L 45
3.1.2 Server MCX vs. Parental Controls 46

3.2 MCX Settings o oo 47
3.2.1 Creating a Test Account 47
3.22 Open Directory 0oL 48
3.2.3 Where The Magic Happens 49

3.3 MCX Preference Implementation 53
3.3.1 DiscBurning oL 54
3.3.2 Web, Mail, and iChat Content Filters 55
3.3.3 Application Access o 57

3.4 Summary ... oL e 57

4 Complex Authorization 59

CONTENTS ix
5 Time Machine 61
5.1 HERE BE DRAGYNS 61
52 Private APIs 62
5.2.1 What’s a Private API? 62

5.2.2 Private API Introspection 63

5.2.3 Watching the Clients 66

5.2.4 Time Machine Operations 67
Bibliography 69

Chapter 1

Groundwork

The first part of this chapter will introduce the messaging subsystem used by a
great many of OS X's programming interfaces. The second part will look at the
way user profile data is handled, and the third will explain the reasoning behind
and facilities of OS X’s authentication system. Together these will provide a
good foundation for the topics discussed in the remainder of the book.

1.1 Mach Messaging

A lot of the APIs in OS X make use of the Mach messaging subsystem. This
is a low-latency, low-memory, kernel-based IPC mechanism, and is a core
component of the Mach operating system (upon which OS X’s xnu kernel
is based). In most cases, these APIs are generated by the Mach Interface
Generator (MIG) tool based on some easy-to-write interface definitions. One
example is the CoreGraphics API: a great many of the methods in the
CGxxxxx.h header files are actually MIG-generated stubs which simply pack
up their arguments and send them to the WindowServer process. Resize a
window in a web browser and you’ll trigger a massive number of Mach IPC
calls— this should provide a good example of how fast the Mach messaging
subsystem can be.

1.1.1 Ports

Mach messaging, and indeed much of the Mach microkernel (and therefore
much of Apple’s XNU kernel), revolves around the concept of ports. A port

2 Groundwork

is a communication channel which is accessible through the acquisition of
discrete send and receive rights, and allows the transfer of messages as typed
data structures.

A port is itself a unidirectional communication channel in a client/server
model. A port usually has a single receiver and potentially many senders;
each client wishing to access a service would obtain a send-right to the server,
which would enqueue messages onto the server’s receive-right. If it sounds as
though port and right are being conflated here, well, that’s correct. In Mach
parlance, so many things rely on ports that it behooves us to use slightly
different terminology to distinguish the many appearances of the type. In
this case a send-right refers to a port which is used to send a message, while
a receive-right is a port used to receive those messages. We will see later how
the two are made to fit together.

Another piece of terminology used to refer to ports (and which we’ll see
shortly) is a name. Since most system services and entities under Mach are
referenced and named by a port, this port is often referred to as that entity’s
name.

A port is represented by a 32-bit numeric value. Part of this value is a
bitfield used to identify the type of resource to which the port refers (is it
a client /server IPC endpoint, is it a task, a thread, etc.). The remainder
can be thought of as a resource index similar to file descriptors under UNIX.
This isn’t necessarily true, mind you, but this is conceptually what we’re
dealing with.

Ports are managed and allocated by the kernel, and the main state associ-
ated with them is their message queue. A port also maintains a count of
references/rights to it. This means that ports are reference-counted in the
manner we're used to seeing with CoreFoundation and Cocoa; however, it is
quite possible (indeed encouraged, under certain circumstances) to destroy a
port outright without regard to its reference count. This is safe, since any
interested parties can request a notification from the kernel when a given
port is destroyed or otherwise becomes inoperative— in the Mach world, this
state is called port death.

Ports also exist within a per-task name space. That means that when you
obtain a send right to a server, the port value you receive is not unique in the
system, it is only unique to your process. However, the Mach kernel provides
facilities to move ports between different name spaces (tasks) with relative
ease. The port name held by two discrete tasks might have different numerical

© 00~ O Uk W+

1.1 Mach Messaging 3

values, but they will refer to the same underlying port, and therefore will
operate upon the same message queue.

The messages sent using Mach ports are typed data collections. They are
not system objects in their own right, but since they are queued they are
designed to be able to hold state between the time a message is sent and
the time it is received. A message can contain not only pure data copied
between address spaces by the kernel, but can also contain references to
virtual memory ranges and port rights. Thus is it possible to send a very
large chunk of data to a server process as a virtual memory range, and
provide a reply port along with it to which the server can send a completion
message. Using virtual memory means that, rather than copying the data,
the physical memory underlying the specified virtual range is simply mapped
into the receiving task’s address space. This makes the transfer of large
amounts of data using Mach ports quite fast and resource-light.

1.1.2 Accessing Services

As a client, you need some means of locating a service with which you intend
to communicate. Since, as we’ve already discussed, the numerical values
representing ports are unique to each task (process) running on the system,
we require some other means of advertising and locating the ports vended
by such services. Luckily for us, we have the bootstrap server to help us out.

The bootstrap server has a simple interface, defined in <servers/bootstrap.h>.
From Mac OS X 10.4 onwards, it is implemented as part of launchd (which
we will cover later in this chapter). Prior to this it was part of the mach__init
process.

Let’s look at the bootstrap client-side API for a moment (see Listing 1.1).

Listing 1.1: Bootstrap Client APIT

/*

* bootstrap_look_up()

*

* Returns a send right for the service port

* declared/registered under the name service_name.

* The service is not guaranteed to be active. TUse

* the bootstrap_status call to determine the status
* of the service.

*

10
11
12
13
14
15
16
17
18

N —

0 N O U W

4 Groundwork

* Errors: Returns appropriate kermnel errors on rpc

* failure.

* Returns BOOTSTRAP_UNKNOWN_SERVICE, if service does

* not exist.

*/

kern_return_t bootstrap_look_up(
mach_port_t bp,
const name_t service_name,
mach_port_t *sp);

Yes, that’s the entire thing— everything else in that file is for servers’ use,
and most of that is actually deprecated now.

To resolve a service, you pass in a pointer to an uninitialized mach_port_t
in the last parameter, and if the lookup succeeds, a send right to the server’s
port is returned by reference. The second parameter is a C-string of the
service’s vended port name. The first is the bootstrap port, which is set up
by launchd and passed on to new processes as they are launched. To access
this value, just reference the bootstrap_port external variable.

It’s common for a server to vend its service port using a reverse-DNS styled
name, such as com.apple.DirectoryService. To look up that port you
would use the code in Listing 1.2.

Listing 1.2: Locating a Service Using the Bootstrap Server

mach_port_t service = MACH_PORT_NULL;
kern_return_t kr = bootstrap_look_up(bootstrap_port, "«
com.apple.DirectoryService", &service);

/* use the port x/
/* ... %/

/* when done, release your reference to it */
mach_port_deallocate(mach_task_self (), service);

1.1.3 The Mach Interface Generator

The most common means of vending Mach services (and the way which the
bootstrap server itself is vended) is using the Mach Interface Generator tool.
This enables you to create interface definition files specifying the types and
methods you want to export using a simplified syntax, and the mig tool will

O J O UL W N

O W W W WWWWWWhNoNoDDNDNDNDDNDNDDNDDN == = =
OO WNF OO UR WNRFRE O WO Uk WD OO

1.1 Mach Messaging

generate C source and header files for client, server, or both. An example of

the syntax can be seen in Listing 1.3 below.

Listing 1.3: An Example MIG IPC Definition

subsystem FCSHelperMIG 75000;

userprefix fcsmig_;
serverprefix fcsmig_do_;

#include <mach/std_types.defs>
#include <mach/mach_types.defs>

import "FCSHelperMIG_types.h";
import <Security/Authorization.h>;

type authInfo_t = array [32] of char;
type migString t = c_string [*:512];
type proplist_t = array [*:1024] of char;
type xmlData_t = array [] of char

ctype: vm_address_t;

routine get_output_from_command

(
helper : mach_port_t;
authorization : authInfo_t;
arguments : proplist_t;
arguments_ool : pointer_t, Dealloc;
out xml_data : xmlData_t;
out xml_data_ool : pointer_t, Dealloc
);
routine run_basic_command
(
helper : mach_port_t;
authorization : authInfo_t;
arguments : proplist_t;
arguments_ool : pointer_t, Dealloc
)
simpleroutine set_log_level
(
helper : mach_port_t;
level : int32_t

Groundwork

40 |5

Let’s go through the contents of this file in sequence:

Line 1:

The subsystem directive associates a name and a numeric prefix value
with the service. Each routine defined in a given subsystem is assigned
a numeric value to distinguish it from other routines, and these numbers
begin at the subsystem value specified here.

Lines 3-4:

The prefix values specify a prefix for the C function names generated
by the MIG tool. For a routine named function, on the client (user)
side the MIG tool will create a C function titled fcsmig_function.
On the server side it would generate code which calls out to a function
you would define called fcsmig_do_function to perform the requested
function.

Lines 6-7:
#include works in MIG in exactly the same way as in C: it reads the
specified source file into the current file at this location.

Lines 9-10:
The import directive is placed directly into the generated C header
files as a C #include directive. The trailing semicolon is not emitted
in this case.

Lines 12-16:

Types can be defined in MIG in a similar manner to a C typedef. In
this case, we define a number of types as essentially arrays of bytes.
The array keyword is used to define an array with an optional size
component, specified within the square braces. If the braces are empty,
the array size is unspecified (and effectively unbounded). If a constant
value is there, then the array always contains that many elements. In
the case of something like [*:512], the array can be any size up to a
maximum of 512 elements.

On Line 16 you can see the ctype keyword. This is used to specify a
different type name to use in the generated C header and source files.

Lines 18-40:
These lines contain the IPC function definitions themselves. There are

1.1 Mach Messaging 7

two types available in MIG: the Routine and the SimpleRoutine. A
Routine is a method which will not return control to the client until the
server has completed its task. It is used for IPC messages which require
some form of reply. A SimpleRoutine is a basic one-way message which
returns immediately; as such, there is no guarantee that the server has
processed the message, only that it was added to the server’s message
queue.

Within the routine definitions are the parameters. In MIG, there is a
required (but not implicit) first argument of mach_port_t. This is the
server’s port. The real arguments follow. They are always stated as
identifier : type, and each parameter must be separated by semicolons.
There are some additional keywords you can see in the example. The
out keyword specifies that the given parameter is used solely for a
return-by-reference result (a corresponding in keyword is implicit).
There is also an inout keyword, referring to a return-by-reference
value which also contains a starting value sent to the server. An
example would be a count value, where the caller specifies the size it
has allocated and the server modifies it to specify the amount used, or
the amount required.

The last keyword we can see in the example is the Dealloc keyword
following some parameter types of pointer_t. This specifies that the
given parameter refers to memory which should be deallocated using
the vm_deallocate function. On input parameters, this deallocation is
taken care of by the MIG-generated stub code. On output parameters
it is a hint to the client. It also tells both sides of the MIG stub code
to allocate memory locally to hold the value, rather than include it
inline similar to a MIG array type.

The mig command-line tool uses the definition file to generate a client-side
header file and both client and server-side implementation files. The header
file contains a specific structure and keywords which clearly identify it as
having been generated by MIG. For example, the generated C function
declaration for the run_basic_command routine defined in Listing 7?7 above
can be seen in Listing 1.4.

Listing 1.4: The Generated C Function

1 |/* Routine run_basic_command */
2 |#ifdef mig_external
3 |mig_external

© 00~ O Ot~

10

12
13
14
15

CO O UL W N+

e e e el el
CO IO UL W —=O©

8 Groundwork

#telse

extern

#endif /* mig_external x/

kern_return_t fcsmig_run_basic_command

(
mach_port_t helper,
authInfo_t authorization,
proplist_t arguments,
mach_msg_type_number_t argumentsCnt,
vm_offset_t arguments_ool,
mach_msg_type_number_t arguments_oolCnt

)

We can see immediately that there is a mig_external definition at the top
of the function, and the comment above that specifies whether the source
routine definition was for a Routine or a SimpleRoutine. Take note of these
clues, because you can infer a lot about function types and arguments using
this information.

Looking further down the file, we see some structure definitions, including
the one in Listing 1.5.

Listing 1.5: The Message Structure

#ifdef __MigPackStructs
#pragma pack(4)
#endif

typedef struct {
mach_msg_header_t Head;
/* start of the kernel processed data */
mach_msg_body_t msgh_body;
mach_msg_ool_descriptor_t arguments_ool;
/* end of the kernel processed data x*/
NDR_record_t NDR;
authInfo_t authorization;
mach_msg_type_number_t argumentsCnt;
char arguments [1024];
mach_msg_type_number_t arguments_oolCnt;

} __Request__run_basic_command_t;
#ifdef __MigPackStructs
#pragma pack()
#endif

Here we can see the layout of the actual message structure that is being
sent out to the server. After looking at this and more, you will notice that

1.1 Mach Messaging 9

it always consists of a mach_msg_header_t followed by a mach_msg_body_t
and a mach_msg_ool_descriptor_t. After this is an NDR_Record_t, and
what follows maps to the routines arguments. Note that the variably-sized
data arguments have been split into a buffer and a count, both here and in
the C function in Listing 1.4.

After a little checking of other structures, we can determine that the
mach_msg_ool_descriptor_t is only included under certain circumstances,
namely when an unbounded array is being passed (it’ll be sent inline if under
a certain size, and sent out-of-line if larger). But when it’s included, this
is where it’s placed. So we have two possible structure types. Great— two
types we can work with.

The last piece of knowledge that we need is how these messages are handled
server-side. We already know that, given a routine name of function
and a userprefix of go_, the generated client-side function will be named
go_function. On the server side, we’ve specified a serverprefix of do_, which
leads to a server method called do_function. But MIG doesn’t implement
that for us, it builds code which calls it— we have to implement it ourselves.
So what does MIG use to handle the message receipt and marshalling? It
has its own internal prefix, _X. So on the server side, in addition to the real
IPC endpoint of do_function() there is also a message-marshalling routine
called _Xfunction(). This function will always adhere to a simple standard:
it will return kern_return_t, and it will receive two arguments, both of
which are pointers to mach messages. The first argument is the incoming
message, the second is the outgoing one to fill out. And since we just saw
what these look like, we know what’s going to be inside them.

1.1.4 Putting The Knowledge To Use

You will be forgiven for thinking that the above is all very much academic, but
let’s consider a real-world example, albeit one based around quite a narrowly-
defined scenario, where this knowledge is absolutely invaluable. This scenario
revolves around the Application Enhancer package from Unsanity.

The Application Enhancer implements a system-wide means of loading third-
party code into any process on a per-user-session basis. It does this by
injecting code into the WindowServer process at user login and patching a
core function used by all other GUI-based applications to check into the Ul
system (something which is required in order to receive Carbon/Cocoa events
and to use the window manager). This core function is called synchronously

http://www.unsanity.com/haxies/ape
http://www.unsanity.com

10 Groundwork

by the other processes in their main threads, and there is no timeout (at
least, none that I’ve seen so far). Their patch runs before this method can
complete, which means that it can start copying code and data into the
calling application’s address space without worrying that the application’s
main thread will get in the way.

The function in question is an internal routine called _CGSCheckInApplication.
Most of the WindowServer application is actually implemented in the Core-
Graphics framework, so we’ll use the nm tool to dump a list of all the
available functions, and we’ll filter the output using Grep. The output is
shown in Listing 1.6.

Listing 1.6: The _CGSCheckInApplication routine and friends.

000000000000557d t __CGSCheckInApplication
00000000001122e3 t __CGXCheckInApplication
0000000000112143 t __XCheckInApplication

Here we can see three variants of the method. One beginning with _CGS, one
beginning with _CGX, and one beginning with _X. This looks familiar, no?
Quite right, it’s a MIG function. Evidently the WindowServer interface is
built using MIG, which means we are able to make a number of assertions:

1. We know exactly what the last few stack frames of the calling thread
will look like: it’s called _CGSCheckInApplication(), which has called
mach_msg_overwrite() to deliver the message and wait for the result,
and that calls mach_msg_overwrite_trap() to actually trap into the
kernel code and suspend the thread until the reply is ready. This
means that we can make changes to that thread to modify the return
address of, say, the mach_msg_overwrite () frame to call some injected
code. This injected code can then load an external library to setup the
Application Enhancer subsystems properly and cleanly. This is safe
because we can guarantee that the stack is in this known-good state
for the operation, and we know that it won’t change while we’re trying
to make our own edits.

2. We know exactly the arguments coming into the server function
_XCheckInApplication(). This means that we aren’t working blind
when we patch that function— we know exactly what registers to save,
what part of the stack frame to save, and so on.

00 ~J O Ui W N

11
12
13
14
15
16
17
18
19
20
21
22

1.1 Mach Messaging 11

Now, the actual structure of the message sent to _XCheckInApplication()
isn’t known to us, but we do know what it will begin with, so we know where
to start looking within the message structure. With a bit of foresight, we
should be able to determine some useful information from what we see on
the stack there. And of course it’s easy to attach gdb to the WindowServer
to try this out— just be sure to do it via an ssh session, since your UI will
freeze as soon as the WindowServer hits a breakpoint. . .

In my case, after a little poking around, I was able to work out where in the
structure the calling application’s process ID was located, and also where its
flavor was to be found (the flavor variable indicates whether the app is native,
a PowerPC binary running on Intel via Rosetta, or a Classic application).
This was all I needed to make a decision on whether to install patches in
that application. The code in Listing 1.7 shows the patch routine I used
in my own Application-Enhancer-like application. The actual patching and
injection implementation. .. well, that’s for another day.

Listing 1.7: A Patch On Both Your Houses

static kern_return_t __checkin_app_patch(+
mach_msg_header_t *InHeadP, mach_msg_header_t *«<
OutHeadP)

{

#ifdef __MigPackStructs
#pragma pack (4)
#endif
typedef struct {
mach_msg_header_t Head;
NDR_record_t NDR;

ProcessSerialNumber procPSN;

uint32_t __off40;

uint32_t __offd4,

uint32_t flavor;

pid_t proc_id;
} Request;

#ifdef __MigPackStructs
#pragma pack ()
#endif

pthread_mutex_lock(&csx_mutex);

// don't do anything if our management daemon
// isn't actually running

23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
o1
52
53
54
95
o6
o7
58

12

Groundwork

if (cmx_port != MACH_PORT_NULL)
{
Request *pIn = (Request *) InHeadP;

debug_log("Received application startup msg,
cmx_port = %#x", cmx_port);

pid_t procid = pIn->proc_id;
uint32_t flavor = pIn->flavor;
boolean_t rosetta = FALSE;

// check to see if we need to byte-swap things
if (pIn->NDR.int_rep != NDR_record.int_rep)
{

procid
flavor

0SSwapInt32 (procid);
0SSwapInt32(flavor) ;

#if defined(__i386__) || defined(__x86_64__)

rosetta = TRUE;

#endif

// don't do anything if the flavor is '1',

// because that means it's a Classic process

// also don't patch unless the app's process

// group ID is equal to our own process ID

// i.e. avoid apps not launched by the

// WindowServer

if ((flavor != 1) && (getpgid(procid) == <«
getpid ()))

__checkin_core(procid, rosetta);
}
pthread_mutex_unlock(&csx_mutex);

return (__checkin_app_orig(InHeadP, OutHeadP));

o

1.2 User Profile Data 13

1.2 User Profile Data

1.2.1 Directory Services

There are a few kinds of user data in Mac OS X. The first is the most obvious,
namely the files which exist within a user’s home folder, and includes their
documents, images, and the like. The second also resides in the user’s
home, although only as an implementation detail: the user’s preferences for
interacting with the system and applications. The last resides in a central
database accessible (to some degree) by virtually anyone on the computer.
This last is the user profile, and supports their ability to sign into the
computer, to set their profile picture, and change their password. These
records are also the source for more esoteric information, such as that related
to a user’s UNIX group membership and filesystem privileges.

On OS X, this data is stored in a series of database files in a hidden directory
(if you're feeling adventurous, look inside /var/db/dslocal). In earlier
versions of OS X it was stored in a similar location, but was part of the
venerable NetInfo system which dated back to NeXTstep.

The facility by which this data is managed and accessed is called Open
Directory. This is Apple’s implementation of the standard LDAP form
of directory-based data management. Open Directory is also the name
for the family of APIs used to access this data, at the core of which sits
DirServices.framework. The setup of this service on Mac OS X is that
a single daemon provides the public API and request marshalling service,
while various plugins are loaded which are able to access different forms
of data stores. One such store was NetInfo, now supplanted by the Local
store described above. Other stores include Microsoft’s Active Directory and
standard LDAP services (utilizing either v2 or v3 of the protocol). There is
additionally a plugin which supports obtaining information from standard
BSD configuration files.

The directory server crucially maintains a search list of plugins (called nodes in
DS parlance), which is editable by any user with administrative rights through
the Directory Utility application. In OS X 10.5 this was located in the Utilities
folder, but in 10.6 it was moved into /System/Library/CoreServices. This
search list defines the order in which plugins are asked to fulfil an information
request from a client. An additional search list exists specifically for contact
information lookup, which means that you can for instance hook contact
lookup into an external LDAP server but look for configuration details only
on the local system.

14 Groundwork

1.2.2 Exploring Open Directory

We can explore the contents of our Open Directory setup using the dscl tool.
This operates in both an interactive mode and a straightforward command-
line invocation, receiving options and commands from the command-line and
sending data to standard output before terminating. In interactive mode,
a number of commands are available, including an 1s command to list the
contents of the current directory node, as shown in Listing 1.8.

Listing 1.8: Listing Open Directory Nodes
% dscl localhost
> 1s
BSD
Local

Contact

Search

> cd Local/Default
/Local/Default >

The default store is located at the path /Local/Default, and within it are
listed all the known record types. A small sample is shown in Listing 1.9.

Listing 1.9: Listing Open Directory Record Types
/Local/Default > 1s

Services
SharePoints
SMBServer

Users

WebServer
/Local/Default >

A particularly interesting record type is SharePoints, which is used to store
the details of any folders you share (or which are shared automatically by
the system). To see what records of a particular type are available, you can
use 1s to read that type as if it were a directory. And then to read the data
stored in a record you would use the read command. An example of its
output from a SharePoint record can be seen in Listing 1.10, where you can
see information used for sharing the item under both the AFP and SMB
file-server protocols.

1.2 User Profile Data 15

Listing 1.10: An Open Directory SharePoint Record

/Local/Default > read SharePoints/Jim\ Dovey's\ Public\«
Folder/

dsAttrTypeNative:afp_guestaccess: 1

dsAttrTypeNative:afp_name:

Jim Dovey's Public Folder
dsAttrTypeNative:afp_shared: 1
dsAttrTypeNative:directory_path: /Users/jim/Public
dsAttrTypeNative:ftp_name:

Jim Dovey's Public Folder
dsAttrTypeNative:sharepoint_account_uuid: O0F981803+«>

-0568-490D-BCD9-E4C49CDA5774
dsAttrTypeNative:sharepoint_group_id: 69CBFCCA-595B-4«

CE1-A82F-F29ADOEEOC6C
dsAttrTypeNative:smb_createmask: 644
dsAttrTypeNative:smb_directorymask: 755
dsAttrTypeNative:smb_guestaccess: 1
dsAttrTypeNative:smb_name:

Jim Dovey's Public Folder
dsAttrTypeNative:smb_shared: 1
AppleMetaNodeLocation: /Local/Default
RecordName :

Jim Dovey's Public Folder
RecordType: dsRecTypeStandard:SharePoints
/Local/Default >

There are a lot of other types to look at, but the most interesting items are
the Computers, ComputerGroups, Groups, and Users types. And even more
so when you look at the record for a User for whom Parental Controls are
enabled. We’ll see more of that later, in Chapter 3. Listing 1.11 shows the
record of a standard user account with no special features.

Listing 1.11: An Open Directory User Record

/Local/Default > read Users/bob/

AppleMetaNodeLocation: /Local/Default

AuthenticationAuthority: ;ShadowHash; ;Kerberosvb;;«
bob@LKDC: SHA1 .21«
CD166FEFC128883FCB504AC38FAEF2E40CEA42 ; LKDC: SHA1«+
.21CD166FEFC128883FCB504AC38FAEF2E40CEA42;

AuthenticationHint: test

GeneratedUID: 4ED7E269-B428-4482-B01B-DC11B376966C

NFSHomeDirectory: /Users/bob

Password: skk*kkxkk

16 Groundwork

Picture:

/Library/User Pictures/Instruments/Drum.tif
PrimaryGroupID: 20

RealName:

Bob McTesting-Person

RecordName: bob

RecordType: dsRecTypeStandard:Users
UniqueID: 502

UserShell: /bin/zsh

For now, we’ve seen enough of the workings of Open Directory to be able to
look deeper into the actual data stored here without undue head-scratching
later on. This means that it’s time to step on to our next subject.

1.3 Authorization

1.3.1 Authorization vs. Authentication

Though the two are often confused, the tasks of authentication and autho-
rization are quite different, and solve different problems.

e Authentication refers to the process of determining the identity of
some entity, whether it be a human, a computer, or a process. An
encrypted connection using certificates or a password dialog are common
ways of implementing authentication.

e Authorization is the process of obtaining a user’s consent for under-
taking a particular action, such as making modifications to a system
file or some configuration.

A key aspect of authorization is that while it might well involve some form
of authentication, this isn’t a requirement. For instance, a frequent form of
authorization is used when you modify a file: the system checks whether your
effective user ID and group ID matches those with permission to modify the
file. Another example would involve copying items into the Applications
folder. If you're logged in as a user with administrative privileges, the
copy just happens. If you’re not, then a dialog pops up requesting that an
administrator enter their name and password to authorize the action.

[ENEUCR NGRS

0 J O Ut

10
11

12
13
14

15
16
17
18
19
20

1.3 Authorization 17

1.3.2 Obtaining Authorization

The standard way of obtaining user authorization for your actions on OS
X is to use the Authorization API from the Security framework. Look-
ing at <Security.framework/Authorization.h> shows the main routines
involved.

The Authorization API is based around the AuthorizationRef pseudo-
object type. This object encapsulates a collection of requested rights, such
as the right to modify a file, or to execute an application with administrative
privileges. The code in Listing 1.12 illustrates the process of obtaining a
commonly-used authorization right in OS X 10.6.

Listing 1.12: Creating an Authorization

// start with an empty authorization reference

AuthorizationRef authRef = NULL;

0SStatus status = noErr;

status = AuthorizationCreate(NULL, <«
kAuthorizationEmptyEnvironment , <
kAuthorizationFlagDefaults, &authRef);

assert (status == errAuthorizationSuccess);

// the right we're requesting

AuthorizationItem right = { <
kSMRightBlessPrivilegedHelper , 0, NULL, O 1};

AuthorizationRights rightSet = {1, &right}l};

AuthorizationFlags flags = <
kAuthorizationFlagInteractionAllowed | «
kAuthorizationFlagExtendRights;

// authorize some rights -- will prompt the user

status = AuthorizationCopyRights(authRef, &rightSet, «
kAuthorizationEmptyEnvironment , flags, NULL);

assert(status == errAuthorizationSuccess);

// use the authorization...

//

AuthorizationFree (authRef, «
kAuthorizationFlagDestroyRights);

=~ W

O © 0o~ O ot

S UL W N~

18 Groundwork

If you're using Objective-C, you can make use of a slightly less flexible but
much simpler to use API in the form of SecurityFoundation.framework.
The equivalent Objective-C version of the code above is shown in Listing 1.13.

Listing 1.13: Obtaining Authorization in Objective-C

AuthorizationFlags flags = <«
kAuthorizationFlagExtendRights |«
kAuthorizationFlagInteractionAllowed;

NSError *error = nil;

SFAuthorization *auth=[SFAuthorization authorization];

if ([auth obtainWithRight:«
kSMRightBlessPrivilegedHelper

flags:flags
error :&error])

{
// Use the right
¥
// the authorization object has been autoreleased <«

already

1.3.3 Behind the Scenes

Sooner or later the question arises: how does the system know how to
authorize a particular right? Well, the answer lies in another hidden system
folder, albeit one well-known to UNIX folks: /etc. There is a property list
file there, writable only by root, called simply authorization. It is this
file which contains all the definitions of what types of rights exist, and how
to go about authorizing them. In Listing 1.14 you can see the definition
corresponding to the right we requested in the sample code above.

Listing 1.14: The SMJobBless () Right Definition

<key>com.apple.ServiceManagement.blesshelper</key>
<dict>
<key>class</key>
<string>rule</string>
<key>comment</key>
<string>Used by the ServiceManagement framework to «
add a privileged helper tool to the system <«
launchd.</string>
<key>k-of -n</key>

10
11
12
13
14

N O Uk W N

10
11
12
13

1.3 Authorization 19

<integer>1</integer>
<key>rule</key>
<array>
<string>is-root</string>
<string>authenticate-admin-30</string>
</array>
</dict>

Let’s look at this and see what it all means. First of all, we see that its class
is set to rule. This tells the system that to acquire this right, one or more
of a number of rules must be matched. The k-of-n value of 1 says that only
one of the specified rules need match for the right to be granted. Lastly
comes the list of rules to use:

e is-root seems fairly straightforward: if the caller is running as root,
then they are automatically considered authorized.

« authenticate-admin-30 is a little less so. We can infer that it means
an admin password is required’, but it might just check whether the
caller is an administrator. And what does the 30’ mean?

To investigate the rules, we look further down the same file, where we find
all these rules defined for us. In particular, we see authenticate-admin-30
and a similar-looking item titled is-admin. These are shown in Listing 1.15.

Listing 1.15: Administrator Authorization Rules

<key>authenticate-admin-30</key>

<dict>
<key>class</key>
<string>user</string>
<key>comment </key>
<string>Like the default rule, but
credentials remain valid for only 30 seconds after <«

they 've
been obtained. An acquired credential is shared by «
all clients.

</string>
<key>group</key>
<string>admin</string>
<key>shared</key>
<true/>

14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29

1

20 Groundwork

<key>timeout </key>
<integer >30</integer>
</dict>
<key>is-admin</key>
<dict>
<key>authenticate -user</key>
<false/>
<key>class</key>
<string>user</string>
<key>comment </key>
<string>Verify that the user asking for «
authorization is an administrator.</string>
<key>group</key>
<string>admin</string>
<key>shared</key>
<string>true</string>
</dict>

The comments in those entries make clear what they are designed to do. You
can see that they have their own class entries, which this time are both set
to user. This means that they will check something to do with the UNIX
effective user and/or group IDs of the caller in order to make a decision. We
can then see that they both have a group key with a value of admin. This
means that they will both check whether the caller is a member of the admin
group. We can also see that they are both shared rights available to any
application, not just the caller, and we can see the 30-second timeout defined
on authenticate-admin-30.

There’s one other difference worth pointing out though. The is-admin
right has an extra key: authenticate-user, with a value of false. This
tells the system that for the is-admin right, it should not request au-
thentication, it should only check the caller’s group membership. The
authenticate-admin-30 rule however uses the default behaviour, which is
to present an authentication dialog to confirm that a member of the admin
group is actually present at the console.

Our last stop on this whistle-stop tour of the authorization rules list is the
authenticate rule, which you can see in Listing 1.16. This has a class of
evaluate-mechanisms, and a list of mechanisms to evaluate.

Listing 1.16: The authenticate Rule
<key>authenticate</key>

~N O Uk W N

© o

10
11

1.4 Summary 21

<dict>
<key>class</key>
<string>evaluate-mechanisms</string>
<key>mechanisms</key>
<array>
<string>builtin:smartcard-sniffer ,privileged</«
string>
<string>builtin:authenticate</string>
<string>builtin:authenticate ,privileged</string«
>
</array>
</dict>

This looks fairly interesting. Can we change this? Well, yes. We only need
to replace the mechanisms listed with some of our own and we can become
the ultimate authority on the system. How’s that for power?

As to what exactly authorization mechanisms are and how we create them,
we’ll investigate this further in Chapter 4.

1.4 Summary

We’ve covered a lot of ground in this chapter, much of it quite broad in focus.
The aim of this chapter was to introduce the root concepts we’ll be using
in the rest of the book without this information cluttering up the details of
what we’ll aim to implement there.

At this point you know how the system manages authentication and autho-
rization, and how that process is defined. You know how user profile data is
stored on the system and how it is accessed. Lastly, you know about Mach
ports and messaging, and that this is the means by which the Mach kernel
performs most of its work. This last item forms the key of our first task:
crash reporting.

Chapter 2

Crash Reporting

In this chapter we will look at the tasks involved in implementing a crash reporting
tool of our own to replace Apple's default one when our own application crashes.
We'll see how crashes can be caught and what information you can get out of
them, then how you can show that information to the user and file it to your
own webserver or email address.

Much of the information in this chapter came together with the aid of a message
board post made by Tim Wood of the Omni Group a number of years ago[2].
For this | give many thanks.

2.1 When Things Go Wrong. ..

We’ve all seen the dialog shown in Figure 2.1 at one time or another. This
is what appears when an application crashes due to conditions like a memory
access violation or a specific abort (caused by an uncaught exception for
instance).

Crashing is a fact of life, and as developers we are if anything more likely to
see these dialogs than our end users, as part of our job description is to track
down and remedy such conditions. However, Apple has a very interesting
tool for handling crashes which enables them to not only determine when an
app has crashed but to gather information about its cause, the application’s
state, and to optionally package up and forward that information to Apple’s
bug reporting tool. This is a very powerful and useful piece of technology,

24 Crash Reporting

FAlILapp quit unexpectedly.

Click Reopen to open the application again. Click Report
to see more detailed information and send a report to

Apple.

i b \
® Ignore | 'i Report... : 'i Reopen

Figure 2.1: OMG FAIL!

and more than a few developers have wished that they had some way to
hook into the system crash reporter dialog to get crashes from their own
apps sent to them instead of Apple.

One third-party solution, from the clever folks at Unsanity, is the Smart
Crash Reports haxie.! This uses the InputManager system to load their
code into the CrashReporter application when it launches and makes some
changes based on the application which crashed. If the crashed application
has some specific keys in its Info.plist file then the Smart Crash Reports
code will alter the resulting dialog to send the report to the developer of
that application. Unfortunately, since it uses the InputManager system
to load itself, it isn’t compatible with OS X 10.6, which no longer loads
InputManager plugins, thus cutting off the installation vector.

Another technique is to build a crash reporter infrastructure into your
application directly, based on signal handlers; this approach is used by
Landon Fuller’s PLCrashReporter library.

With a little more work on our part, though, we can implement our own
version of the Crash Reporter tool and bundle it with our own applications
(and as system administrators, we could even install our own replacement for
Apple’s version and have the system use that instead). One example of this

!The term ‘haxie’, a play on the word ‘hack’, is used by the folks at Unsanity to refer
to their pre-packaged system modifications.

http://unsanity.com/haxies/smartcrashreports
http://unsanity.com/haxies/smartcrashreports
http://code.google.com/p/plcrashreporter/

2.2 Catching A Crash 25

approach is the Omni Group’s OmniCrashCatcher application, built into all
their Mac applications. We will develop something along the same lines in
this chapter.

2.2 Catching A Crash

2.2.1 Signals and Exceptions

When an application does something untoward, various things happen at
the system level. From a UNIX standpoint, a signal is sent to the process
which caused the error; this is commonly SIGINT, SIGBUS or SIGSEGV for
access violations and SIGABRT to manually crash the app in the event of
an uncaught high-level exception. The default handlers for all these signals
create a memory core dump of the application and terminate it, but by
installing your own handler you can do whatever you please within the limits
of operation inside a signal-handler.

The Mach kernel takes a more refined approach by using Mach messaging
to send a low-level exception event to a handler for the target process. By
default, OS X uses a Mach exception handler for all processes, and this causes
CrashReporter to do its stuff. There’s nothing preventing an application from
overriding this however, and installing their own exception handler. Having
done this, all exceptions are sent as high-level messages to a designated
exception port created by the application. The only step is to create a thread
to listen on that port. This can be a dedicated thread inside the application
itself (although there are some nuances of which you should be wary in that
case) or it can be a separate application. This latter approach is what we
will use to build our crash catcher.

2.2.2 Catching Mach Exceptions

Mach exceptions are caught by creating a server which assigns itself as
the destination for exception messages from a particular process (or all
processes). The methods used by this service are shown in exc_server.h,
which may be located at <mach/exc_server.h or in the same location within
Kernel . framework, depending on your operating system version. On OS X
10.6, they are in the latter, but the content of the file hasn’t changed, only
its location.

© 00 O Ui W N+

11
12

13
14
15
16

17
18

26 Crash Reporting

The first step is to create a mach port to receive messages. For this we use
the mach_port_allocate() function. When we allocate a port, we specify
a simple right associated with that port. In this case, as we want to receive
messages from the kernel, we specify MACH_PORT_RIGHT_RECEIVE at this
point. This only gives half of the required rights however. We thus far
have a port from which our process can read, but nothing has the right
to write to it. To remedy this, we need to add another right to the port,
which we do through the mach_port_insert_right () function. What we
want is for any process attaching to our receive-right to be able to get a
send-right which delivers messages to its message queue. Additionally, we
want to ensure that each sender has its own send-port, that they’re not
shared amongst multiple processes (sharing is not a requirement, so this is
the safest and most reliable option). The right we want to add in this case is
a make-send right, which tells the kernel that it can generate new send-rights
with accompanying send ports as they are requested. This is denoted by
the MACH_MSG_TYPE_MAKE_SEND constant. The full allocation process can be
seen in Listing 2.1.

Listing 2.1: Allocating an Exception Server Port

#include <mach/message.h>
#include <mach/mach_error.h>
#include <mach/task.h>
#include <mach/port.h>

kern_return_t kr = KERN_SUCCESS;
mach_port_t exc_catcher_port = MACH_PORT_NULL;

kr = mach_port_allocate(mach_task_self (), «
MACH_PORT_RIGHT_RECEIVE, &exc_catcher_port);

if (kr !'= KERN_SUCCESS)

{

fprintf (stderr, "mach_port_allocate(): %d (%s)\n"
kr, mach_error_string(kr));
return;

3

kr = mach_port_insert_right (mach_task_self (), <
exc_catcher_port, exc_catcher_port, «
MACH_MSG_TYPE_MAKE_SEND) ;

if (kr !'= KERN_SUCCESS)

{

19

20
21

ST W N

2.2 Catching A Crash 27

fprintf (stderr, "mach_port_insert_right(): %d (%s)\«
n", kr, mach_error_string(kr));
return;

Next we want to be able to asynchronously receive messages on this port. In
the past, we would spawn a new thread which would loop around calls to
mach_msg() or mach_msg_overwrite(), or we would use a MIG-generated
exc_server_routine() function to do that for us. With a little CoreFoun-
dation or Foundation help we could wrap the port and place it into a runloop.
In C we might use the kevent () API to find out when a message arrives—
but that would require another background thread and/or more glue to make
it work asynchronously.

In OS X 10.6 we have a better way: Grand Central Dispatch. Using this
API we can create a dispatch source which monitors a given Mach port for
the arrival of new messages, and we can provide a Block of code for that
source to run when a message arrives on the port. This source can then be
attached to an event queue (specifically, the one for the application’s main
thread) and will enqueue the provided block there when messages arrive.
This enables us to be purely asynchronous without the need for spawning
extra threads or using additional APIs, and without the need for complex
resource-sharing algorithms such as locks or semaphores. Additionally, the
use of C Blocks, a form of lexical closure, means that we needn’t worry about
the details of keeping relevant contextual information around— the Blocks
runtime will do all of that for us for heap and stack variables alike.

Listing 2.2 shows the process of setting up a dispatch source to handle
messages on our exception port. Note that it handles messages by calling out
to the MIG-generated exc_server () function to handle decode and dispatch
of the message (yes, just about every Mach API is generated using MIG).

Listing 2.2: Creating a Dispatch Source for our Exception Port

dispatch_source_t exc_source = dispatch_source_create(«
DISPATCH_SOURCE_TYPE_MACH_RECV, exc_catcher_port ,«
0, dispatch_get_main_queue());

// handle new messages when they arrive
dispatch_source_set_event_handler (exc_source, ~{
mach_msg_header_t *msg, *reply;
kern_return_t krc = KERN_SUCCESS;

10
11
12
13

14
15
16

17
18
19

20
21
22
23

24
25

26

=W N

28 Crash Reporting

#define MSG_SIZE 512
msg = alloca(MSG_SIZE);
reply = alloca(MSG_SIZE);

// read the incoming message
krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, «
MSG_SIZE, exc_catcher_port, 0, MACH_PORT_NULL«>
)
MACH_CHECK_ERROR (mach_msg, krc);

// demux and dispatch the message to the «
appropriate handler

if (exc_server(msg, reply) == false)
{
fprintf (stderr, "exc_server () hated the «
message");
return; // returns from the block
}

// we've got the reply from the MIG handler <
function
// now we need to send it back
(void) mach_msg(reply, MACH_SEND_MSG, reply->«
msgh_size, 0, msg->msgh_local_port, 0, <
MACH_PORT_NULL);
1)

We now know how we’re going to receive exceptions sent by the kernel, but
we haven’t told the kernel that we want to receive them, or for whom. The
first piece of information we need is the target’s task port. This is the Mach
equivalent of a process ID, and in fact you can map between the two easily.
However, in order to gain access to another task’s task port your application
will need to either run as the root user or as a member of the procmod group
using the setgid file flag. Once we have a task port, we can take a copy of
the existing exception handler ports and other metadata before installing
our own handler. The code in Listing 2.3 shows how this is done.

Listing 2.3: Setting Exception Ports
// define our handler data structure
#define HANDLER_COUNT 64
typedef struct _ExceptionPorts {
mach_msg_type_number_t maskCount;

0 J O Ot

11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27

28
29
30

31
32
33
34
35

36
37
38

39
40

2.2 Catching A Crash 29

exception_mask_t masks [HANDLER_COUNT];
exception_handler_t handlers [HANDLER_COUNT];
exception_behavior_t behaviors [HANDLER_COUNT];

thread_state_flavor_t flavors [HANDLER_COUNT];

} ExceptionPorts;
static ExceptionPorts * gOldHandlerData = NULL;

pid_t procID = ...; // get target process ID
task_t task = MACH_PORT_NULL;
kern_return_t kr = KERN_SUCCESS;

kr
if
{

= task_for_pid(mach_task_self (), procID, &task);
(kr '= KERN_SUCCESS)

fprintf (stderr, "task_for_pid: %d (%s)\n", kr, <
mach_error_string(kr));
return;

g0ldHandlerData = calloc(l, sizeof (gOldHandlerData)) ;
g0ldHandlerData->maskCount = HANDLER_COUNT;

kr

//
kr

= task_get_exception_ports(task, EXC_MASK_ALL, «
g0ldHandlerData->masks, gO0ldHandlerData->«
maskCount, gOldHandlerData->behaviors, <«
gO0ldHandlerData->flavors);

(kr != KERN_SUCCESS)

fprintf(stderr, "task_get_exception_ports: %d (%s)«
\n", kr, mach_error_string(kr));
return;

install new ports

= task_set_exception_ports(task, EXC_MASK_ALL & ~(«
EXC_MASK_MACH_SYSCALL|EXC_MASK_SYSCALL |«
EXC_MASK_RPC_ALERT), exc_catcher_port, <«
EXCEPTION_DEFAULT, THREAD_STATE_NONE);

(kr !'= KERN_SUCCESS)

fprintf (stderr, "task_set_exception_ports: %d (Js)<
\n", kr, mach_error_string(kr));
return;

S U W N~

o

10
11
12

13

30 Crash Reporting

You can see above that we’re handling all exception types except for Mach
system calls, UNIX system calls, and RPC alerts (Mach messaging). These
types of exceptions are used to implement basic kernel-to-user interface
functionality, while the others are all (potentially at least) seen when an
application crashes.

In addition to setting the exception ports, we need to revert back to the
original ones when our application is done. Since we’re using Grand Central
Dispatch we can set a cancel handler on our exception event source. This
way we can simply cancel the handler and everything will be reset for us
using code which we define, seen here in Listing 2.4.

Listing 2.4: Resetting Exception Ports

dispatch_source_set_cancel_handler (exc_source, ~{
// reinstall the o0ld exception ports
int 1i;
for (i = 0; i < gOldHandlerData->maskCount; i++)
{
if (gO0ldHandlerData->handlers[i] == <
MACH_PORT_NULL)
break;

task_set_exception_ports(task, gOldHandlerData<«
->masks [i], gOldHandlerData->handlers[i],«
g0ldHandlerData->behaviors[i], <
gO0ldHandlerData->flavors [i]);
}

// destroy our exception handler port
mach_port_destroy(mach_task_self (), «
exc_catcher_port);

B

When releasing our receive port, we use mach_port_destroy() to ensure
that the port is destroyed. The similar mach_port_deallocate() function
will decrement the port’s reference count, causing it to be released only once
that reference count reaches zero. When writing the server-side of these
things, I prefer to destroy the server port explicitly rather than risk leaving
it open somewhere.

Note also that we use a for loop to install the old handlers. This is because
there may be many different ports used to handle the different types of
message, and these ports might belong to many different processes. For

2.2 Catching A Crash 31

instance, a memory paging system might install a handler for bad access
exceptions, handling them by paging in storage from disk.

2.2.3 Task Death

At this point, we want to think a little about our target application. What
should happen if that task exits cleanly? Well, in this case we want to find
out about it and stop running. In the UNIX world we might use wait ()
or waitpid() to accomplish this, but again these are synchronous calls. A
better means would be to wait for a port death notification on our target’s
task port, again using a dispatch source as an asynchronous event processor.

Anyone with rights to a Mach port can request a notification of one of several
exceptional states, found in <mach/notify.h>:

1. Port Deleted
A send or send-once right was deleted. This notification is sent to the
owner of the receiving port.

2. Port Destroyed
A receive port was destroyed. The notify message retains the receive
right, however, preventing it from being destroyed until the notification
handler calls mach_port_destroy() or mach_port_deallocate().

3. No Senders
A receive port’s last sender was deallocated. At this point an on-
demand Mach server can safely shut down. This message is sent to the
owner of the receiving port.

4. Send Once
A port created via the make-send-once right was deallocated.

5. Dead Name
A send (or send-once) right died, leaving a dead name in the current
namespace. A dead name is similar in concept to a dangling pointer in
C, except that it won’t cause a crash when you attempt to use it, just
an error.

In our situation, we can use the dead name notification to find out when a
task port is deleted. As a task port is only deleted when the corresponding
task is destroyed, this notification will tell us when our target task has
terminated. Listing 2.5 shows how this is done.

[\]

=

10
11
12

13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33

32 Crash Reporting

Listing 2.5: Handling Task Death Notifications

mach_port_t death_port = MACH_PORT_NULL;
mach_port_t old_port = MACH_PORT_NULL;

kr = mach_port_allocate(mach_task_self (), «
MACH_PORT_RIGHT_RECEIVE, &death_port);
kr = mach_port_request_notification(mach_task_self (), «

[container task], MACH_NOTIFY_DEAD_NAME, 0, «
death_port, MACH_MSG_TYPE_MAKE_SEND_ONCE, &«
old_port);

dispatch_source_t death_source;

death_source =dispatch_source_create(«
DISPATCH_SOURCE_TYPE_MACH_RECV, death_port, 0, «
dispatch_get_main_queue ());

dispatch_source_set_cancel_handler (death_source, ~{
// when cancelled, reset the old notification port
// (this may be MACH_PORT_NULL)
mach_port_request_notification(mach_task_self (), «
task, MACH_NOTIFY_DEAD_NAME, O, old_port, 0, «
NULL);

// the source owns our port, so we destroy it here
mach_port_destroy(mach_task_self (), death_port);

2

dispatch_source_set_event_handler (death_source, ~{
mach_msg_header_t * msg;
msg = alloca(MSG_SIZE);
// consume the message (we know what it says)
(void) mach_msg(msg, MACH_RCV_MSG, MSG_SIZE, «

MSG_SIZE, death_port, 0, MACH_PORT_NULL);

// the task has gone-- log the crash report
// we only do this once the app has gone, in case
// a logged exception isn't fatal
backtrace_log();
// the task we're watching is gone: quit now
dispatch_source_cancel (exc_source);
dispatch_source_cancel (death_source);

b

One important detail here is the call to backtrace_log() on line 27. We

—_

O © 00O Uk W

2.3 Exception Handling 33

actually record a backtrace on every exception, even though that backtrace
might not result in the application’s termination. As a result, we want to
store that trace until such time as we know the application has terminated.
The way we do that here (although this is over-simplified in the extreme) is
to only log the backtrace information when the application terminates. If
there is no backtrace, then we simply exit. Otherwise, we generate a log file.
We will see this in action in Section 2.3.2.

2.2.4 Running the application

We’re now handling exceptions and task termination asynchronously using
blocks. We’ve not had to implement any other functions (yet), although
we’ll have to implement the exception handler routines in a moment. Right
now however, we’ve only one small task to do: fire up our sources and run
the dispatch processing loop. This simple task, the last item in our main ()
function, is shown in Listing 2.6.

Listing 2.6: Running the Dispatch Loop

// dispatch sources are created in a suspended state,
// so we must resume them now

dispatch_resume (exc_source);

dispatch_resume (death_source);

// run the dispatch loop
dispatch_main () ;

// once that returns, we're all done
return (0);

2.3 Exception Handling

2.3.1 Implementing Mach Exception Handlers

There are three Mach exception routines which we need to implement, each
serving a slightly different purpose:

e catch_exception_raise()
This is the simplest function. Its parameters specify the exception
which occurred along with the task and thread on which it happened.

OO UL W N+

34 Crash Reporting

e catch_exception_raise_state()
This version allows the caller to alter the state of a thread. It passes
in the current thread state, and provides storage for a new state to be
applied. It does not, however, provide the ports for either the task or
the thread on which the exception occurred.

e catch_exception_raise_state_identity()
This is the best of both worlds. It provides the task and thread ports
for the triggering thread, and it also allows the handler to directly
inspect and update the thread’s state.

For our purposes, we will have to implement all three methods, along with
a method to forward the exceptions to their original handler(s). We will
look at this method first, as it shows the methodology behind processing
exceptions to a certain degree.

We'll call our method forward_exception(), and you can see it in full in
Listing 2.7.

Listing 2.7: Implementing forward_exception()

kern_return_t

forward_exception

(
thread_t thread,
mach_port_t task,
exception_type_t exception,
exception_data_t code,
mach_msg_type_number_t codeCount,
int *flavor,
thread_state_t old_state,
mach_msg_type_number_t old_stateCnt,
thread_state_t new_state,
mach_msg_type_number_t *new_stateCnt

~

kern_return_t kr;
unsigned int portIndex;

mach_port_t port;
exception_behavior_t behaviour;
int thread_flavor;

23
24
25
26

27
28

29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
45

46
47
48
49
50
o1

52
53
54
55
56
o7
o8
59
60
61

2.3 Exception Handling 35

thread_state_data_t thread_state;
mach_msg_type_number_t thread_state_count;

for (portIndex = 0; portIndex < gOldHandlerData->«
maskCount; portIndex++)

{
if (gOldHandlerData->masks[portIndex] & (1 << «
exception))
{
// This handler wants the exception
break;
}
}

if (portIndex >= gOldHandlerData->maskCount)
{
fprintf (stderr, "No handler for exception type«
%d. Not forwarding.\n");
return (KERN_FAILURE);

port = gOldHandlerData->handlers[portIndex];
behaviour = gO0ldHandlerData->behaviors[portIndex];
flavor = gOldHandlerData->flavors[portIndex];

fprintf (stderr, "Forwarding exception, port = %#x,<
behaviour = %d, flavor = %d\n", port, «
behaviour, flavor);

if ((behaviour != EXCEPTION_DEFAULT) &&
(old_state == NULL))

{
thread_state_count = THREAD_STATE_MAX;
kr = thread_get_state(thread, &thread_flavor, «
thread_state, &thread_state_count);
MACH_CHECK_ERROR_RET (thread_get_state, kr);

flavor = &thread_flavor;
old_state = thread_state;
old_stateCnt = thread_state_count;

new_state = thread_state;
new_stateCnt = &thread_state_count;

62
63
64
65

66

67
68
69
70
71

72

73

74
75
76
7

78

79

80
81
82
83

84
85
86
87
88
89

90
91

36

Crash Reporting

switch (behaviour)

{
case EXCEPTION_DEFAULT:
fprintf (stderr, "Forwarding to «
exception_raise\n");
kr = exception_raise(port, thread, task, «
exception, code, codeCount);
MACH_CHECK_ERROR_RET (exception_raise, kr);
break;
case EXCEPTION_STATE:
fprintf (stderr, "Forwarding to «
exception_raise_state\n");
kr = exception_raise_state(port, exception«
, code, codeCount, flavor, old_state,«
old_stateCnt, new_state, <
new_stateCnt);
MACH_CHECK_ERROR_RET (exception_raise_state ,«
kr) ;
break;
case EXCEPTION_STATE_IDENTITY:
fprintf (stderr, "Forwarding to «
exception_raise_state_identity\n");
kr = exception_raise_state_identity(port, «
thread, task, exception, code, <«
codeCount, flavor, old_state,
old_stateCnt, new_state, new_stateCnt«
);
MACH_CHECK_ERROR_RET (+
exception_raise_state_identity, kr);
break;
default:
fprintf (stderr, "forward_exception: «
unknown beaviour %d\n", behaviour);
break;
}
if (behaviour != EXCEPTION_DEFAULT)
{
kr = thread_set_state(thread, *flavor, «

new_state, *new_stateCnt);
MACH_CHECK_ERROR_RET (thread_set_state, kr);

2.3 Exception Handling 37

92
93 return (KERN_SUCCESS);
94 |}

There’s a lot of code in here, so let’s cover it piecemeal.

e Lines 4-13:
We take the largest set of parameters possible, but we don’t require
that they all be valid. We can’t figure out the source task or thread
without being given those details, but we can get a thread’s state
ourselves if we have been passed a thread port to use.

e Lines 26-33:
Here we look for the first handler which is interested in the exception
we're forwarding. Once we find one, we exit the loop— only the first
will get to process the exception.

e Lines 41-33:
Get the exception details from the the old handler’s data.

e Lines 47-60:
If the old handler’s behaviour indicates that it wants thread state infor-
mation but we’ve not been passed any, fetch it using thread_get_state().
Assign the results to the parameter variables used by the following
code.

e Lines 62—85:
Based on the exception behaviour requested by the old handler, call the
appropriate variant of exception_raise(), passing along the relevant
parameters. The first argument to this function is the old handler’s
port, so it gets sent directly to that handler.

e Lines 87-91:
If the old handler requested thread state information, then it has also
given us some back. Use that to set the thread’s state via a call to
thread_set_state().

This function should be called at the end of all our exception handlers. We
only want to grab some details of the crashed application’s state, we’re not
interested in trying to handle the exception and prevent the crash in any
way.

O O UL W N+

e el e
T W N~ OO

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

38 Crash Reporting

The exception handlers themselves are reasonably straightforward. We want
to get backtraces for every thread in the crashed task, so we only need the
task port. This is provided for us in every instance with the exception of
the EXCEPTION_STATE behaviour. However, we can work around this by
keeping a copy of our target task port in a global variable to be referenced
in this method. This leaves us with the rather simple declarations shown in
Listing 2.8.

Listing 2.8: Exception Handler Implementation

kern_return_t
catch_exception_raise

(
mach_port_t exception_port,
thread_t thread,
mach_port_t task,
exception_type_t exception,
exception_data_t code,
mach_msg_type_number_t codeCnt
)
{
kern_return_t kr;
backtrace_task(task, thread, code, codeCnt);
kr = forward_exception(thread, task, exception, «
code, codeCnt, NULL, NULL, O, NULL, O);
return (kr);
}

kern_return_t

catch_exception_raise_state

(
mach_port_t exception_port,
exception_type_t exception,
exception_data_t code,
mach_msg_type_number_t codeCnt,
int *flavor,
thread_state_t old_state,
mach_msg_type_number_t old_stateCnt,
thread_state_t new_state,
mach_msg_type_number_t *new_stateCnt

kern_return_t kr = KERN_SUCCESS;

34

35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
95
56
57
58
59

60
61

2.3 Exception Handling 39

backtrace_task(gTargetTask, MACH_PORT_NULL, code, «
codeCnt);
kr = forward_exception(MACH_PORT_NULL, «
MACH_PORT_NULL, exception, code, codeCnt, <«
flavor, old_state, old_stateCnt, new_state, «
new_stateCnt);
return (kr);
¥
kern_return_t

catch_exception_raise_state_identity

(
mach_port_t exception_port,
mach_port_t thread,
mach_port_t task,
exception_type_t exception,
exception_data_t code,
mach_msg_type_number_t codeCnt,
int *flavor,
thread_state_t old_state,
mach_msg_type_number_t old_stateCnt,
thread_state_t new_state,
mach_msg_type_number_t *new_stateCnt

kern_return_t Kkr;
backtrace_task(task, thread, code, codeCnt);

kr = forward_exception(thread, task, exception, «
code, codeCnt, flavor, old_state, <
old_stateCnt, new_state, new_stateCnt);
return (kr);

All of the items simply call through to backtrace_task() and then forward
the exception on to its original handlers.

2.3.2 Backtracing

Now we reach the last big piece of the puzzle: backtracing. As of OS X
10.6, obtaining a nicely-printed backtrace of your own stack has become

UL W N

40 Crash Reporting

much easier through the opening of the previously-private backtrace() and
backtrace_symbols() API (see <execinfo.h> for more information).

These APIs only look at the stack of the calling thread however. This means
that they’re not much use in our situation, where we need to look at the
stack of not only another thread, but another process in a foreign address
space. Once again, Mach has our backs covered. In <mach/vm_map.h>,
<mach/vm_param.h> and similar, we can see the API for accessing the virtual
memory space of another task. All we need is the task port for the foreign
process and we can read and write there to our hearts’ content. This means
that we could, for example, take the information from More Backtrace and
update it for x86_ 64 processor support. Alternatively you might look at the
BOINC project, which has an updated version of the same, albeit under the
slightly more restrictive LGPL license.

However, in the interest of brevity, I shall do neither here, but rather will
link to an OS X private framework— Symbolication.framework. This is
the same framework which provides the official ReportCrash application’s
backtracing support, and it has a nice Objective-C API which you can see
through judicious use of the class-dump tool?>. Our use of the framework
is quite limited (we use only five classes and one method on each of them)
so I'll show the entire backtrace-generating routine first, in Listing 2.9, and
describe what it’s doing afterward.

Listing 2.9: A Simple Remote Backtracer

if (gBacktracelog == nil)

gBacktracelLog = [NSMutableString new];
else

[gBacktracelLog setString: @""];

VMUSymbolicator * symbolicator = [VMUSymbolicator «
symbolicatorForTask: task];

NSArray * samples = [VMUSampler sampleAllThreadsO0fTask:«<
task withSymbolicator: symbolicator];

NSUInteger i = O0O;

for (VMUBacktrace * backtrace in samples)

{

2You might also want to look at the class-dump-z project which, while it doesn’t support
some things like 64-bit binaries, has a number of niceties missing in the vanilla class-dump
implementation. The project is located at http://code.google.com/p/networkpx/wiki/
class_dump_z

http://www.opensource.apple.com/source/openmpi/openmpi-8/openmpi/opal/mca/backtrace/darwin/MoreBacktrace/MoreDebugging/MoreBacktrace.c
http://boinc.berkeley.edu/trac/browser/trunk/boinc/lib/mac/QBacktrace.c
http://boinc.berkeley.edu/trac/browser/trunk/boinc/COPYING.LESSER
http://www.codethecode.com/projects/class-dump/
http://code.google.com/p/networkpx/wiki/class_dump_z
http://code.google.com/p/networkpx/wiki/class_dump_z

11

12
13
14
15
16
17

18
19

20

21

22
23
24
25
26
27
28

2.3 Exception Handling 41

Let’s

[gBacktracelLog appendFormat: @"Thread %d (J%#x)", i,<
[backtrace thread]];
if ([backtrace thread] == exc_thread)
[gBacktracelog appendString: @" Crashed"];
[gBacktraceLog appendString: @":\n"];

pointer_t * trace = [backtrace backtrace];

for (int j = 0; j < [backtrace backtracelength]; j«
++)

{

VMUSymbol * symbol = [symbolicator <«
symbolForAddress: trace[jl];

VMUSymbolOwner * owner = [symbolicator «
symbolOwnerForAddress: tracel[j]];

[gBacktracelLog appendFormat: @"%d\t%-30s %p : %<
@\n", j, [[owner name] UTF8String], trace«
[j], [symbol namell;

3

// empty line between items
[gBacktracelLog appendString: @"\n"];

i++;

>

look at that we’re doing here:

Lines 1-4:

As discussed above, we will keep a backtrace log around until the target
application terminates, since an exception might not lead to an outright
crash. This is where we manage that log, in an NSMutableString
instance.

Line 6:

The VMUSymbolicator class knows about obtaining symbolic informa-
tion from a process’s direct and indirect symbol tables. We create one
up front to save on the potentially costly cross-process virtual memory
copying and caching which this class uses to do its work.

Line 7:

The VMUSampler class generates the backtraces themselves. In this
case we're using a simple one-shot method to get back an NSArray
containing one VMUBacktrace for each thread in the target process.

42 Crash Reporting

e Lines 9-28:
Here we loop through the results of backtracing the thread, with each
frame being output like so:

— Lines 11-14:
First we append the details of the thread itself— its index and
the Mach thread handle (port). If this thread is the same as the
one which caused the exception, then we note that in the output
as well.

— Line 16:
The VMUBacktrace instance has a -backtrace accessor which
returns an array of pointers. These are the addresses of each stack
frame in the backtrace.

— Lines 19-20:
We obtain a VMUSymbol describing the symbol at the frame address,
and we get an object representing the owner of that symbol, i.e.
the library from which it comes.

— Line 21:
We build the output line with the frame index followed by the
library name padded to 30 characters with spaces, then the frame
pointer and the symbol name.

An example of the output generated by this method can be seen in List-
ing 2.10.

Listing 2.10: Sample Backtracer Output
Thread 7 (0x3f03):

0 libSystem.B.dylib 0x0000008885efca : <«
__semwait_signal

1 libSystem.B.dylib 0x00000088862del : <«
_pthread_cond_wait

2 JavaScriptCore 0x00000082f8d1a0 : <«
WTF:: ThreadCondition::timedWait (WTF::Mutex&, <«
double)

3 WebCore 0x00000080bd4ddl : <«
WebCore::LocalStorageThread::threadEntryPoint ()

4 libSystem.B.dylib 0x0000008885d536 : <«
_pthread_start

5 libSystem.B.dylib 0x0000008885d3e9 : <«

thread_start

2.4 Summary 43

2.4 Summary

In this chapter we have seen how the Mach kernel dispatches hardware and
software exceptions to other processes through the use of Mach ports, and
how those processes can catch and make use of them. We’ve covered the
necessary details of the mach exception server setup and how to create a
dedicated server to catch exceptions for a single task. We’ve also looked at a
simple way of obtaining thread backtraces to create a crash log in our own
format— from here it’s a simple step to present some user interface similar
to Apple’s own crash reporting tool, offering the user the chance to email
you the crash log with any other details they can provide.

You can view the complete source code for the examples presented in this
chapter, along with those from other chapters, at http://github.com/
alanQuatermain/secret-sauce.

http://github.com/alanQuatermain/secret-sauce
http://github.com/alanQuatermain/secret-sauce

Chapter 3

Managed Client

In this chapter we will put aside code for a brief moment and look at the
mechanics of the Managed Client system on OS X, also known as Parental
Control. We'll find out where this data is stored, in what formats, and how it is
used by applications. To do this we will have to look at the OS X directory service
and the preferences system, including a peek into the code for the open-source
components of CoreFoundation.

3.1 MCX

3.1.1 What is MCX?

MCX stands for Managed Client for OS X[3] and was originally designed
for use on Mac OS X Server version 10.2 (Jaguar). It is formally defined as a
subset of Open Directory, Apple’s directory service, which we looked at briefly
in Section 1.2, and is used to implement access policies for client systems.
These access policies are used to define access rights to many different items,
including individual applications or dock widgets, websites, email and chat
recipients, and more. The MCX records themselves are designed to be set
on any number of LDAP records, whether for users, groups, computers, or
computer groups. They are then cached by client machines and compiled
into a single authoritative document which applies to the currently-logged-in
user of the machine. In the parental controls scenario, the items are applied
only to individual user records, and not as many options are provided, but
otherwise their handling is identical.

46 Managed Client

[System | Content Mail & iChat = Time Limits Logs '

. [1 Use Simple Finder

Provides a simplified view of the computer desktop for
young or inexperienced users.

[| Only allow selected applications

BT Allows the user to open only the selected applications. An
administrator password is reqguired to open other applications.

Figure 3.1: Parental Controls on Mac OS X

From an Authentication vs. Authorization standpoint (see Section 1.3.1),
the Directory Service itself (whether it’s an Apple Open Directory, Microsoft
Active Directory, Novell eDirectory, or LDAP) first provides user authentica-
tion. The MCX settings then define that user’s authorization with regards to
the computer that they are using. As we will see in Section 3.2.2, the MCX
settings are generally stored as a single data block inside a client directory
type. OS X Server usually requires that this be an Open Directory server.

3.1.2 Server MCX vs. Parental Controls

There are a few differences between the types of MCX settings you can
manage using OS X Server and the Parental Controls preferences on your
Mac workstation, the latter being a subset of the former. One major example
is that the server allows you to differentiate between set-once items and
forced items, while Parental Controls only creates forced ones. Set-once items
are designed to make a change which the user isn’t required to keep, but
which is recommended. An example would be to add a link to a university’s
student support website on a user’s dock— it makes it easily available to the
user, but they are free to remove it if they don’t need that link stored there.
A forced item is a permanent restriction. For instance, prohibiting a user
from burning CDs or DVDs (or both) is a commonly forced setting.

Another difference revolves around the use of print services. OS X Server
provides management facilities for shared print queues exported via Open
Directory. Server MCX settings allow an administrator to place restrictions

3.2 MCX Settings 47

New Account: | Managed with Parental Controls | &]

Full Name: managed

Account name: managed

Password: sssessss ?

Verify: essesssee

Password hint: | password
{Recommended)

"1 Turn on FileVault protection

@ (" Cancel) (Create Account)

Figure 3.2: Creating a Managed User Account

on the print jobs that certain users (or groups, computers, or labs) can send
to each queue. Parental Controls doesn’t include that restriction, primarily
because such things are usually the sole concern of computer networks with
shared resources.

For the remainder of this section we will be working on an OS X workstation,
and thus will only see the items which can be modified using the Parental
Controls preference pane shown in Figure 3.1.

3.2 MCX Settings

3.2.1 Creating a Test Account

Our first task is to create a new user account with which to test the MCX
implementation. This begins with a trip to the System Preferences app and
the Accounts preference pane. Unlock the pane and add a new account. On
the sheet which appears (cf. Figure 3.2), pull down the New Account popup
and select ‘Managed with Parental Controls’ Fill in the rest of the details
however you see fit, but make a note of the password.

Once this is done, select the new account in the source list to the left and click
the ‘Open Parental Controls’ button to see the Parental Controls preference

= N =

N

48 Managed Client

pane. Here you can activate any options you choose; we will show the
different forms of output data for each option later in the chapter, so feel
free to select anything you like.

3.2.2 Open Directory

This is where our dive into the dscl command-line tool in Section 1.2.2
comes in use. We’ve created the user account, and we know that MCX is a
subset of the Open Directory schema, so the first place we will look for that
data is inside Open Directory. Specifically, we will look at the record for the
user we've just created.

Open a Terminal window and enter the commands shown in Listing 3.1.

Listing 3.1: Locating the User Record

Jims-iMac ~ $ dscl localhost
> cd Local/Default/Users/
/Local/Default/Users > read managed

There’s a lot of output now, isn’t there? The most interesting part, however,
is the new MCXSettings attribute, which appears to be a fairly standard
property list, as excerpted in Listing 3.2.

Listing 3.2: The MCXSettings attribute

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "«
http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>mcx_application_data</key>
<dict>
<key>com.apple.Dictionary</key>
<dict>
<key>Forced</key>
<array>
<dict>
<key>mcx_data_timestamp</key>
<date>2010-12-07T21:24:08Z</date>
<key>mcx_preference_settings</key>

15
16
17
18
19
20
21
22
23
24
25

3.2 MCX Settings 49

<dict>
<key>parentalControl</key>
<true/>
</dict>
</dict>
</array>
</dict>
</dict>
</dict>
</plist>

If you alter your settings in the Parental Controls preference pane and read
this record again, you will see the updates reflected inside this property list.
Everything about MCX happens here.!

3.2.3 Where The Magic Happens

We’ve seen where the data is kept. The next part of the puzzle is to locate
it at runtime. Let’s look at some of the keys in one of the smaller items and
see what we might deduce:

e mcx_application_data
This surrounds every we’ve seen so far. From its name, it seems safe to
deduce that this part of the settings refers specifically to application-
related settings. This also leads us to suspect that there may be another
form of setting contained in this dictionary, perhaps something for use
by OS X Server.

— com.apple.Dictionary
This looks like a bundle identifier, and after further investigation it
is indeed the bundle identifier for the OS X Dictionary application.
It seems most likely that this dictionary contains settings specific
to that application.

*+ Forced
This seems to fit with the description of set-once vs. forced
settings as defined in Section 3.1.2. It seems safe to deduce,

1On OS X Server there is also an attribute called mca-flags. This is only used on
exported directory services, and assists clients in merging multiple MCXSettings items, so
we won’t cover it here.

50 Managed Client

therefore, that this contains any settings which are to be
considered immutable by the user.

mcx_data_timestamp

This looks like the date and time at which the item
was written to the directory record, in RFC-3339 for-
mat. Changing values and re-checking the contents of the
property list confirms this assumption. Given that the
MCXSettings attribute is designed to be merged together
with similar values from other directory records, this is
likely used to help determine a precedence order during
that merge.

mcx_preference_settings

This looks very much like the root of a regular preference
property list, such as that in which user settings are
commonly stored. Looking at different items within the
MCXSettings attribute reinforces this conclusion.

What we can deduce, then, is that each item in the mcx_application_data
dictionary contains data keyed for a specific application. Then there are both
forced and set-once lists of preference settings for that application contained
within there. The next question, however, is where this information comes
into play? We know that the data is designed to be merged together from
multiple such records, but we don’t know what happens to it.

The next step, then, is to think laterally. This is property-list preference
data, and preferences in this format are (ultimately) handled through Core-
Foundation. Luckily for us, CoreFoundation is largely open-sourced?, so we
can take the advice of many UNIX sages before us® and go straight to the
source.

Our first stop is CFApplicationPreferences.c, since this implements the
standard search path used to lookup preference values for an application. A
search of this file for the term MCX turns up nothing, but when we look for
the word managed we find the interesting comment excerpted in Listing 3.3.

2A lot of Apple’s OS X code can be found at http://www.opensource.apple.com,
including this. Its project-name is CF-<version>.
3«Use the source, Luke.”

http://tools.ietf.org/rfc/rfc3339.txt
http://tools.ietf.org/rfc/rfc3339.txt
http://www.opensource.apple.com

O © 00O Uk Wi

—_

w

3.2 MCX Settings 51

Listing 3.3: Managed Preferences?

/* Here is how the domains end up in priority order in «
a search list. Only a subset of these are setup <«
by default.

argument domain

this app, this user, managed

this app, any user, managed

this app, this user, this host
this app, this user, any host (AppDomain)
suiteN, this user, this host

suiteN, this user, any host

*/

You’ll note that on lines 3—4 of the listing we see the word ‘managed’. The
following two entries on lines 5-6 are quite similar, and will appear familiar
to anyone who has used the CFPreferences API, where a preference can be
obtained by specifying an app-user-host tuple.

So we appear to have found a reference to a special domain which is overridden
only by values passed on the command-line (well there’s a loophole), and
which overrides all other application preferences. We now need to find its
details. Sadly, the managed domain is only mentioned in this one location
within this file, and it isn’t added to the search list by default. So what now?

Well unfortunately, the CoreFoundation source code isn’t all open-sourced,
and the details of the managed preference data is in the closed-source portion.
We still have some more tricks up our sleeve though.

Armed with the knowledge that it’s referred to as the ‘managed’ preference
domain, we shall pull out a copy of strings. This is a useful command-line
tool shipped with the standard Xcode development kit which will print out
everything in the strings table of an application binary. Let’s start by looking
for ‘managed’— see the results in Listing 3.4.

Listing 3.4: Searching for ‘managed’ in CoreFoundation

[jim@Quatermain:~]J strings /System/Library/Frameworks/«
CoreFoundation.framework/CoreFoundation| grep <«
managed

managed/%@Q/%@

managed/

[jim@Quatermain:~]1%

52 Managed Client

That doesn’t look entirely helpful. Perhaps capitalizing the word will help?

Listing 3.5: Searching for ‘Managed’ in CoreFoundation

[jim@Quatermain:~]% strings /System/Library/Frameworks/«
CoreFoundation.framework/CoreFoundation| grep «
Managed

/Library/Managed Preferences

/Library/Managed Preferences/

/Library/Managed Preferences/%@/

/Library/Managed Preferences/%@

CFXPreferencesManagedSource

[jim@Quatermain:~]7

That looks more like it. Not only can we see a symbol called CFXPreferencesManagedSource
which we might save for later, but we can see ‘/Library/Managed Preferences’

in there too, which looks like the jackpot. Interestingly, we can also see

format strings which would seem to indicate that this folder would contain

subfolders rather than files. This looks like an interesting nuance.

Let’s take a look at the output then. We’ll switch on everything we can find
in Parental Controls for text account, then we’ll log in as that user to see
what we can find. The results are in Listing 3.6.

Listing 3.6: Inside the Managed Preferences Folder

[jim@Quatermain:~]% cd /Library/Managed\ Preferences

[jim@Quatermain:..anaged Preferencesl]y 1ls

test

[jim@Quatermain:..anaged Preferences]’) cd test
[jim@Quatermain:..eferences/testl’) 1s

com.apple.Dictionary.plist
com.apple.DiscRecording.plist
com.apple.applicationaccess.new.plist
com.apple.applicationaccess.plist
com.apple.dashboard.plist
com.apple.dock.plist
com.apple.familycontrols.contentfilter.plist
com.apple.familycontrols.logging.plist
com.apple.familycontrols.timelimits.plist
com.apple.finder.plist
com.apple.frameworks.diskimages.plist
com.apple.iChat.AIM.plist
com.apple.iChat.Jabber.plist

3.3 MCX Preference Implementation 53

com.apple.iChatAgent .plist
com.apple.mail.plist
com.apple.mcxprinting.plist
com.apple.parentalcontrols.cache.plist
com.apple.screencapture.plist
com.apple.systempreferences.plist
com.apple.systemuiserver.plist
complete.plist
[jim@Quatermain:..eferences/test]’

So there we have it— the end result is a set of perfectly normal preference
files. These files are owned and can only be modified by the root user, since
they are potentially used to implement security policies.

3.3 MCX Preference Implementation

The contents of the com.apple.Dictionary.plist output by MCX is shown

in Listing 3.7. Comparing it to the values in Listing 3.2 above, we can see that

the output file apparently consists of the contents of the mcx_preference_settings
dictionary.

Listing 3.7: Dictionary Application Managed Preferences

<?7xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "«
http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>parentalControl</key>
<true/>
</dict>
</plist>

The Dictionary application is fairly basic however. The really interesting
stuff (from a third-party perspective) includes the settings for disc burning,
content filters, and application access restrictions. Let’s take a look at each
of those in turn.

54 Managed Client

3.3.1 Disc Burning

Disc burning settings are spread across a number of applications. Firstly,
com.apple.DiscRecording.plist specified a single key-value pair: Burn-
Support=off. This will disable disc burning via the DiscRecording framework
used by third-party applications. Additionally, the finder is given a setting
of ProhibitBurn=true to disable its disc-burning options.

The last change is applied to the SystemUIServer application, which is
responsible for determining the actions undertaken when blank media is
inserted. In this case, the preferences contain a dictionary item with two
sub-items, shown in Listing 3.8. There we can see two sub-items, blankcd
and blankduvd, each of which has the same array of actions to take when these
types of media are mounted by the system: eject the media, then alert the
user.

Listing 3.8: SystemUIServer Settings to Disable Disc Burning

<?xml version="1.0" encoding="UTF-8"7>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "«
http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>
<key>mount -controls</key>
<dict>
<key>blankcd</key>
<array>
<string>eject</string>
<string>alert</string>
</array>
<key>blankdvd</key>
<array>
<string>eject</string>
<string>alert</string>
</array>
</dict>
</dict>

</plist>

3.3 MCX Preference Implementation 55

3.3.2 Web, Mail, and iChat Content Filters

The Parental Controls system allows for the specification of whitelists of web
content, email recipients, and iChat message recipients. The specification of
each of these can be found in the settings for each application.

The first and simplest is the web content filter, which can be seen in
com.apple.familycontrols.contentfilter.plist. Browser vendors are
suggested to check this preference domain before showing URLs, but for
URLs originating outside the browser, OS X Launch Services will use the
contents of this preference domain automatically. In our case, we’ve decided
to stick with the built-in content filters rather than specify our own white list,
and this is specified using the settings in Listing 3.9. The restrict Web setting
tells the system to use its built-in filtering rules, while the useContentFilter
setting simply turns the filter on or off.

Listing 3.9: Web Content Filters
<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "«
http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">
<dict>

<key>restrictWeb</key>

<true/>

<key>useContentFilter</key>

<true/>
</dict>
</plist>

Our next subject, the Mail app, allows the specification of an email recipient
whitelist and a parental permission-request email address to which Mail
will automatically send emails when requested. This address is also used
in the iChat whitelist discussed below. The settings are enabled through
the parentalControl key, and the parental email is actually an array under
the parentalEmails key. The actual email recipient whitelist is an array of
dictionaries, as seen in Listing 3.10.

Listing 3.10: Mail MCX Settings

<?7xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "«
http://www.apple.com/DTDs/PropertyList-1.0.dtd">

56 Managed Client

<plist version="1.0">
<dict>
<key>parentEmails</key>
<array>
<string>xxxxxxxx0@mac.com</string>
</array>
<key>parentalControl</key>
<true/>
<key>whiteList</key>
<array>
<dict>
<key>email</key>
<string>xxxxxxxQapple.com</string>
</dict>
</array>
</dict>
</plist>

iChat’s content filters are spread across a few different preference files, one
for each of the Jabber and AIM protocols, and another for the iChatAgent
background application. This latter is responsible for managing the iChat
service connections and message delivery. The whitelist for each protocol
is similar in structure to the Mail app’s version, albeit with the email key
replaced with screenName. The iChatAgent settings are used to enable
parental controls and enable logging, as seen in Listing 3.11.

Listing 3.11: iChatAgent MCX Settings

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "«
http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Setting.parentalControls</key>
<true/>
<key>Setting.parentalControls.forceChatlLogging</key«
>
<true/>
</dict>
</plist>

3.4 Summary 57

3.3.3 Application Access

Application access settings are specified in com. apple.applicationaccess.new.plist.
This contains a single item, familyControlsEnabled, to turn the filter on and

off, and an array under the key whiteList. Each application is specified by the
dictionary shown in Listing 3.12. Here we can see the application’s bundle

identifier, display name, and its path, but when this is generated on OS X

Server it will also include a code-signing credential encoded as a data object.

This provides both greater security, since the authorization will fail if an

app has been tampered with, and will also enable the right to follow the
application around if its path changes.

Listing 3.12: Application Access Whitelist Items

<dict>

<key>bundleID</key>

<string>com.apple.AddressBook</string>

<key>displayName</key>

<string>Address Book</string>

<key>path</key>

<string>/Applications/Address Book.app</string>
</dict>
<dict>

<key>bundleID</key>

<string>com.apple.Dictionary</string>

<key>displayName</key>

<string>Dictionary</string>

<key>path</key>

<string>/Applications/Dictionary.app</string>
</dict>

3.4 Summary

The knowledge of the formats used for handling managed preferences means
that it is relatively easy to implement your own user interface around the
creation of these settings. Looking at the output of OS X Server’s MCX
settings can show you how to augment OS X’s Parental Controls system with
other items available only from Mac OS X Server. Additionally, it should be
noted that MCX also supports the setting of arbitrary preference values, so
you can manage preferences for any application you choose.

58 Managed Client

If you're a little more daring, however, there is also the possibility of using a
spawned process running as the root user to tweak the settings within the
Managed Preferences folder at login. This has certain risks due to potential
race conditions, but you could make use of the FSEvents API to track the
creation of those files to update them as soon as possible after their creation,
which might mitigate the risk somewhat.

Chapter 4

Complex Authorization

Coming Soon. . .

Chapter 5

Time Machine

This chapter will look in detail at an Apple Private API. Our target here
will be the Time Machine user interface used by such applications as
AddressBook, iPhoto, Mail, and the Finder. By the end of this chapter you
will have all the information required to integrate your own application’s
Ul into the Time Machine interface in the same manner accomplished by
Apple.

5.1 HERE BE DRAGYNS

The terms and conditions for the Mac App Store prohibits the use
of Private APIs. This means that you will not be able to sell an
application which uses the techniques described in this chapter through
the Mac App Store. You could probably put it into a plugin for such an
app which you distribute through other means, but I can’t guarantee
that there won’t be repercussions.

In other words: tread carefully.

62 Time Machine

5.2 Private APIs

5.2.1 What’s a Private API?

Any large system and SDK provides both Public APIs and Private
APIs. The main and most obvious distinction between the two is that
Public APIs are documented and available for you to use, while Private
APIs have no documentation and are not publicly mentioned at all.

The more nuanced description is that every programming system is
built upon many hundreds of functions and objects, and only a portion
are prepared for public consumption and tested thoroughly enough that
they can be relied upon to function in a consistent way. These few
are designated Public APIs, and they are the gateways to the internal
functionality of the system. The underlying functionality is represented
by Private APIs. Complex subsystems will be designed and exported
only for the benefit of other APIs or applications.

Frequently on Mac OS X these private APIs are encapsulated in Private
Frameworks. These are standard frameworks (albeit without header
files) located in /System/Library/PrivateFrameworks. Most if not
all public frameworks use these to implement at least part of their func-
tionality. Some of these private frameworks eventually become public—
OpenDirectory.framework, URLMount.framework, and DiskArbitra-
tion.framework are three which have done just that— in fact, look
inside the PrivateFrameworks folder and you’ll see symbolic links to
their new public location.

In larger public frameworks, such as CoreServices, CoreFoundation,
Foundation or AppKit, there is frequently another private-to-public
API progression. Many new AppKit features in each release of OS
X can actually be found in earlier versions of that framework or in
Apple applications. Many items written specifically for certain uses
are often cleaned up and moved into a public framework for anyone
to use. One example would be the segmented controls used by the
Mail application. Others simply exist quietly without header files in
one or more OS releases— the CoreText framework (a sub-framework
of ApplicationServices) was introduced in OS X 10.4, but the API
was only made public in 10.5. The same is true of the Objective-C
garbage-collection system.

5.2 Private APIs 63

In our case, the API we’re going to use is part of the private Backup.framework,
which contains the implementation of the Time Machine backup and
restore engine, as well as the user interface.

5.2.2 Private API Introspection

Our first task, then, is to figure out just what APIs are there for us
to find. For this we turn to the Terminal and the nm command-line
tool installed as part of the Xcode Tools. The purpose of this tool is to
display all the symbol table entries in a binary file, for both imported
and exported symbols, for functions and data, whether publicly visible
or not.*

A varied sampling of the nm tool’s output can be seen in Listing 5.1, in
this instance taken from the CoreFoundation framework.

Listing 5.1: Example nm Command Output

000000000011da40 t _CFBasicHashCopyDescription
0000000000002£f80 T _CFBasicHashCreate
U _NSStartSearchPathEnumeration

00000000001794c0 s ___CFBitVectorClass
000000000017dff8 S «

_NSStreamDataWrittenToMemoryStreamKey
00000000001ad100 b __AlternatePlatformLen
00000000001ac478 d ___CFApplelLanguages
00000000001ac470 D ___CFArgStuff

The output consists of three columns: the first contains the value of
the symbol (typically an address), the second indicates its type, and the
third its name. Note that the names all begin with an extra underscore
when compared to the corresponding C source code— this is because
the C compiler front-end parser adds this underscore when generating
assembler code as a matter of convention.

The types shown by nm are represented by single letters. These letters
are uppercase for exported (externally-linked) symbols, and lowercase
for local-only symbols. The different types are:

'The Mach-O binary file format allows symbols to be marked as linkable from other
binaries or only between objects in the current linker unit. The former are created by
using the (implied) extern keyword in declarations, while the latter are created using
__private_extern__.

64 Time Machine

U — Undefined
A reference to an imported symbol whose value is computed and
inserted by the dynamic loader at runtime.

e A — Absolute
An absolute value which cannot change.

o T — Text section symbol
A symbol present within the =~ TEXT, _text section of the binary,
typically a function. Its value is an address.

e D — Data section symbol
A symbol present within the __DATA segment of the binary. Com-
monly a constant value or a global variable. its value is an address.

« B — BSS section symbol
A symbol present within the __DATA, _bss section. An uninitial-
ized static variable. Its value is an address.

e« C — A common symbol
Used for debugger symbol-table entries only. Its value is an
address.

« S — Generic symbol
A symbol residing in a section other than those listed above.
Commonly seen when looking at items residing within the __0BJC
segment or constant, statically-declared data.

The most commonly-encountered types are shown in Listing 5.1 above,
but when we look at the Backup framework we will see that no local
variables are defined at all. In this case, the binary has been stripped,
which refers to the process of removing symbol table entries for all
non-exported symbols. That kinda sucks for us, but there’s nothing we
can do to change it.

Running nm on the Backup framework reveals that its public API
consists of functions beginning with the prefix BU. As a result, we can
filter the output to show us only those functions, as demonstrated in
Listing 5.2.

5.2 Private APIs 65

Listing 5.2: Filtered Backup.framework nm Output
% nm Backup | grep ".*T _BU.*" | awk '{print " "$3}'
_BUAboutToDeleteSnapshots
_BUActivatedSnapshot
_BUChangeTimeMachineTarget
_BUCopyCurrentTargetOriginalOrExistingParentURL
_BUCopyCurrentTargetOriginalPath
_BUCopyCurrentTargetSnapshotURL
_BUCopySnapshotArray
_BUDeactivatedSnapshot
_BUFinishResizingWindow
_BUInvalidateAllSnapshotImages
_BURegisterActivateSnapshot
_BURegisterDeactivateSnapshot
_BURegisterNavigateForwardOrBackward
_BURegisterRequestRestorelImages
_BURegisterRequestRevisionID
_BURegisterRequestSnapshotImage
_BURegisterShowChangedItemsOnlyToggled
_BURegisterStartTimeMachineFromDock
_BURegisterTimeMachineDismissed
_BURegisterTimeMachineRestore
_BURegisterUpdateEntryWindow
_BUStartResizingWindow
_BUStartTimeMachine
_BUTimeMachineAction
_BUTimeMachineSetRestoreAllowed
_BUUpdateGenericSnapshotImage
_BUUpdateSnapshotImage

There are other routines you might see, but they all begin with at
least two underscores, meaning that they were named with at least
one in their source code, indicating that they are internal, and an
implementation detail of the methods seen above.

There’s not a great deal there. We can see some async-notification-style
methods such as _BUActivatedSnapshot and BUFinishResizingWindow.
We can see some command-style functions like BUStartTimeMachine,
and we can see a list of what look like callback registration methods
beginning with _BURegister.

These on their own aren’t a great deal of assistance to us however. If we
were to pull out otool to disassemble the file, we would see that most
of these methods pass on their arguments to multiple local methods.

66 Time Machine

This makes reverse-engineering an inefficient way of determining the
functionality of these functions. However, a better way of learning to
use this API is simply to watch it being used, and emulate the behaviour
we see there.

5.2.3 Watching the Clients

As mentioned in the introduction to this chapter, the most commonly
known Apple applications which use the Backup/Time Machine APIs
are Mail, iPhoto, and the Address Book. Of these three, the Address
Book application looks the smallest, so we will take a look at that one
on the assumption that the code we want to emulate will likely be quite
straightforward in nature.

We first run nm on the Address Book binary and discover a lot of
Objective-C symbols. Filtering the list for items mentioning ‘Backup’
or ‘TimeMachine’ reveals that it is indeed referencing the Backup API.
However the binary has been stripped, leaving us without any clues as to
where we might find those references in the code. However, Objective-C
is a dynamic language using message-passing, so all function information
needs to be encoded in a reloadable format, making it relatively easy
to reconstruct class details from a binary file. Our friend in this regard
is the venerable ‘class-dump’ command-line tool.

Class Dump

Originally written by Steve Nygard in 1997, class-dump is a command-
line tool which will read the contents of the __0BJC segment of a Mach-O
binary and write out the details in the form of Objective-C header files.
It is chiefly used these days for the same purpose to which we will put it
in this chapter: reverse-engineering the headers of private Objective-C
APIs. It has the capability to output all sorts of additional information
inside the headers as well, such as function implementation addresses
and member variable offsets. By default it writes to standard output,
but the -H flag will tell it to generate header files in the current directory,
or one specified using the -o flag.

http://www.codethecode.com/projects/class-dump/

5.2 Private APIs 67

An additional option for class—-dump is the -C flag, which allows you to
provide a regular expression to filter the list of classes output. The regu-
lar expression is applied to the class names themselves. When searching
for ‘Backup’ nothing appears, but change that to ‘TimeMachine’ and we
appear to have hit pay-dirt, receiving the classes shown in Listing 5.3.2

Listing 5.3: Classes Containing ‘TimeMachine’ in the Address Book Applica-
tion

@interface ABTimeMachineController

@interface ABTimeMachineRestoreGroupOperation

@interface ABTimeMachineRestoreOperation

@interface ABTimeMachineSnapshotOperation

@interface ABTimeMachineSource

@interface ABTimeMachineSourcesOperation

Right up top we see the item we will likely want to investigate further:
ABTimeMachineController. We also see a number of items whose
names end with Operation, suggesting that operation queues are in use
here. Perhaps we’ll start with those, as knowledge of their operations
will quite likely help us understand their use within the controller.

5.2.4 Time Machine Operations

The Restore operations we shall skip over, as it is concerned with the
internals of the Address Book app, and is therefore of little interest to
us today.

2Note that I am not including the full headers for any of these classes here as they are
quite possibly considered Apple Confidential Information. Anyone can easily obtain their
own copies using class-dump on their local copy of the Address Book application.

Bibliography

1]

Keith Loepere (Editor), Mach 3 Server Writer’s Guide. Open
Software Foundation and Carnegie Mellon University, 1992.
Downloadable from http://www.rtmach.org/manual/server_
writer.pdf

Tim Wood, Mach Exception Handlers 101. osx-dev Mailing List at
Apple, June 2000.

Archived at CocoaBuilder: http://
www.cocoabuilder.com/archive/cocoa/
35756-mach-exception-handlers-101-was-re-ptrace-gdb.
html#35756

Tips and Tricks for Mac Management. Apple Inc., May 2009.
Downloadable from http://images.apple.com/education/docs/
Apple-ClientManagementWhitePaper.pdf

http://www.rtmach.org/manual/server_writer.pdf
http://www.rtmach.org/manual/server_writer.pdf
http://www.cocoabuilder.com/archive/cocoa/35756-mach-exception-handlers-101-was-re-ptrace-gdb.html#35756
http://www.cocoabuilder.com/archive/cocoa/35756-mach-exception-handlers-101-was-re-ptrace-gdb.html#35756
http://www.cocoabuilder.com/archive/cocoa/35756-mach-exception-handlers-101-was-re-ptrace-gdb.html#35756
http://www.cocoabuilder.com/archive/cocoa/35756-mach-exception-handlers-101-was-re-ptrace-gdb.html#35756
http://images.apple.com/education/docs/Apple-ClientManagementWhitePaper.pdf
http://images.apple.com/education/docs/Apple-ClientManagementWhitePaper.pdf

	Title Page
	Preface
	Groundwork
	Mach Messaging
	Ports
	Accessing Services
	The Mach Interface Generator
	Putting The Knowledge To Use

	User Profile Data
	Directory Services
	Exploring Open Directory

	Authorization
	Authorization vs. Authentication
	Obtaining Authorization
	Behind the Scenes

	Summary

	Crash Reporting
	When Things Go Wrong...
	Catching A Crash
	Signals and Exceptions
	Catching Mach Exceptions
	Task Death
	Running the application

	Exception Handling
	Implementing Mach Exception Handlers
	Backtracing

	Summary

	Managed Client
	MCX
	What is MCX?
	Server MCX vs. Parental Controls

	MCX Settings
	Creating a Test Account
	Open Directory
	Where The Magic Happens

	MCX Preference Implementation
	Disc Burning
	Web, Mail, and iChat Content Filters
	Application Access

	Summary

	Complex Authorization
	Time Machine
	HERE BE DRAGYNS
	Private APIs
	What's a Private API?
	Private API Introspection
	Watching the Clients
	Time Machine Operations

	Bibliography

