Secret Seuree Sauce

Using or Duplicating Apple’s Coolest Internal Functionality

Jim Dovey

iTeam Lead Developer
Kobo Inc.
@alanQuatermain

http://alanquatermain.net/

http://alanquatermain.net

What this talk is not about

* OMG private APIs w0Ot!
e | can be a 1337 h4xx0rz t00
* Process invasion

* Function patching

What this talk is about

* Crash Reporting
* How crashes are reported

* How to interpret crash messages

* How to remotely backtrace a process
* Time Machine
* Who will use this!?
* Concepts and design
* Ul elements, events
* Public API (a whole two functions!)

* Private API

* An example Cocoa controller class

There will be code...

MFETelg

Mach IPC

* The building blocks for the Mach microkernel
* Used at the system level
* Virtual memory pager
* |OKit messaging
* Task/thread kernel APIs
* Used at the user level
* Distributed Objects system
* CoreGraphics/Quartz
* Many many many public APIs and services
* Based around ports

* Think of them as like BSD sockets and you’ll be golden

Mach Interface Generator

* Domain-specific language
* Used to define IPC routines and custom types
* Command-line tool to generate C code

* Separate code is generated for both user and server

MIG Code Sample

routine run_command

(

helper : mach_port_t;

authorization : authInfo_t;

arguments : propList_t;

arguments_ool : pointer_t, Dealloc;
out xml _data : xmlData_t;

out xml_data_ool : poilnter_t, Dealloc

) ;

C Implementation

* User side is all done for you

* MIG generates headers and source code
* Server side is partially complete

* MIG generates message parsers

* You must implement actual IPC endpoints

C Function Names

userprefix fcsmig_;
serverprefix fcsmig_do_;

Generated User C Functions:
kern_return_t fcsmig_run_command(...);

Required Server C Functions:
kern_return_t fcsmig_do_run_command(...);

A Real-Life Example: Exceptions

ServerPrefix catch_;
routine exception_raise(

exception_port : mach_port_t;
thread : mach_port_t;
task : mach_port_t;

) ;

routine exception_raise_state(

exception_port : mach_port_t;

exception : exception_type_t;

code : exception_data_t, const;
inout flavor : 1nt;

old_state : thread state t, const;

out new_state : thread state_t);

* No UserPrefix

e Users call exception_raise(...);

* Servers implement catch_exception_raise(...);

All very nice, but...

What does this have to do with crashes?

* Low-level exceptions can be handled
* UNIX Signals

* SIGABRT, SIGBUF, SIGILL

* Sent to process which triggered them
* Mach Exceptions

* Three routines:

* exception_raise, exception_raise_state,
exception_raise_state_identity

* Sent to the designated exception handler port for the triggering
process

* It’s just a port, so it can be received by any process

What decides on the exception ports!?

* By default the kernel handles them
* Sends a signal to the triggering process

* Anyone who asks
* Can be triggering process (in a dedicated thread)
* Can be something else

* On OS X, launchd sets up an exception handler for everything

Launchd exception handlers

* Special flag in launchd job property lists
® MachExceptionHandler = true

* Causes launchd to register an exception handler server and
launch this process to forward them on

* Default on OS X is setup by com.apple.ReportCrash.Root.plist

* Actual crash reports are created and logged by ReportCrash
app in /System/Library/CoreServices

Rolling Your Own

In your .app Bundle:

* Create a new command-line tool
* Call it OMG_FAIL
* |t’s funny, laugh
* Launch it from your .app when that launches
* Pass it your process ID in its parameters
e Get this from -[NSProcessInfo processIdentifier]
* This tool will now register to receive exceptions for your .app

e BUT:

* Make your tool setgid ‘procmod’ — or else it can’t access
your .app’s task-port to attach the handlers

Creating the exception server

* Copy in exc.defs

* Set to build as ‘server’ in the target’s Compile Sources section

eSO | Final Cut Server Importer

(Relesse I FnalCosern) (2] [=) 0

Overview Action Breakpoints Build and Run Tasks Info Search

Groups & Files File Name A Role

Run Script FCSHelperMIG.defs server
M com.xplatform.fcsimport.helper

» W Compile Sources (10)
Link Binary With Libraries (2)
/4 Executables
& Final Cut Server Importer
com.xplatform.fcsimport.helper
-4, Find Results

HRanlbmarke

Create a Service Mach Port

#include <mach/message.h>
#include <mach/mach_error.h>
#include <mach/task.h>
#include <mach/port.h>

kern_return_t kr = KERN_SUCCESS;
mach_port_t exc_catcher_port = MACH_PORT_NULL;

kr = mach_port_allocate(mach task self(),
MACH_PORT_RIGHT RECEIVE, &exc_catcher _port);

if (kr '= KERN_SUCCESS) {
// print mach_error_string(kr)
return;

Make It Writable

kr = mach_port_insert_right(mach_task_self(),
exc_catcher_port, exc_catcher_port,
MACH MSG TYPE MAKE SEND);

if (kr !'= KERN_SUCCESS) {
// print mach_error_string(kr)

return;

Receive Exception Messages

dispatch_source_t exc_source =
dispatch_source_create(

DISPATCH _SOURCE_TYPE_MACH_RECV,
exc_catcher_port, 0,
dispatch_get_main_queue());

// handle new messages when they arrive
dispatch_source_set_event_handler(
exc_source, ™

r);

Handle Exceptions

mach_msg_header_t *xmsg, *reply;
kern_return_t Kkrc;

#define MSG_SIZE 512
msg = alloca(MSG_SIZE);
reply = alloca(MSG_SIZE);

// read the incoming message

krc = mach_msg(msg, MACH_RCV_MSG, MSG_SIZE,
MSG_SIZE, exc_catcher_port, 0, MACH_PORT_NULL);

// check error for failure

Handle Exceptions (continued)

// demux and dispatch the message to the
// appropriate handler
// exc_server is generated for us by MIG

if (exc_server(msg, reply) == false) {
// print error
return; // returns from the block

Handle Exceptions (continued)

// we've got the reply from our handler function
// now we need to send it back

(void) mach_msg(reply, MACH_SEND_MSG, reply-
>msgh_size, 0, msg—>msgh_local _port, 0,
MACH_PORT_NULL);

Our dispatch source is called when a message arrives
We read it using mach_msg(..., MACH_RCV_MSG, ...)

We pass the message and a reply buffer to the MIG-generated
demux routine exc_server()

If that succeeded, we need to send the reply back to the sender

Registering to Receive Exceptions

// define our data structure to keep hold of

// old exception handler chain

#define HANDLERS 64

typedef struct _ExceptionPorts {
mach_msg_type_number_t maskCount;
exception_mask_t masks [HANDLERS] ;
exception_handler_t handlers [HANDLERS] ;
exception_behavior_t behaviors [HANDLERS] ;
thread state flavor_t flavors[HANDLERS];

} ExceptionPorts;

static ExceptionPorts * gOldHandlerData = NULL;

Registering (continued)

pid_t proclID = ...; // get target process ID
task_t task = MACH_PORT_NULL;
kern_return_t kr = KERN_SUCCESS;

// fetch target’s task-port

kr = task_for_pid(mach_task_self(), procID,
Stask);

if (kr !'= KERN_SUCCESS)

{
// don’t have privileges to get task ports
// this 1s why we need setgid ‘procmod’
return;

Registering (continued)

// copy old exception handlers
gOldHandlerData = calloc(...);
g0ldHandlerData—>maskCount = HANDLERS;

kr = task_get_exception_ports(
task, EXC _MASK_ ALL,
g0ldHand lerData—>masks,
g0ldHandlerData—>maskCount,
g0ldHandlerData—>behaviors,
gOldHandlerData—>flavors);

if (kr != KERN_SUCCESS) {
// handle error

¥

Registering (continued)

// 1install new ports
kr = task_set_exception_ports(task,
EXC_MASK_ALL &
~(EXC_MASK_MACH_SYSCALL |
EXC_MASK_SYSCALL |EXC_MASK_RPC_ALERT),
exc_catcher_port, EXCEPTION_DEFAULT,
THREAD _STATE_NONE);

if (kr '= KERN_SUCCESS) {
// handle error

}

Cleanup

* When the app we’re monitoring quits or crashes, we want to
reset the old exception ports, so we don’t hose the system

* In dispatch source parlance, we can do this with a source
cancellation block

* The old ports may be empty, they may be many and complex:
but it’'s easy enough to reset them all.

Source Cancellation Handler

int 1;
for (i = gOldHandlerData—->maskCount-1; i>=0 i++)

{

if (gOldHandlerData->handlers[i] ==
MACH_PORT_NULL)

break;

task_set _exception_ports(task,
gO0ldHandlerData—>masks[i],
g0ldHandlerData->handlers[i],
g0ldHandlerData->behaviors[i],
gOldHandlerData—->flavors[i]);

¥

// destroy our exception handler port
mach_port_destroy(mach_task_self(),
exc_catcher_port);

One more piece of groundwork

* Determining when our target has quit
* We can use the target’s task-port for this
* Ask the server to send us a dead-name notification

* Tells us when the task has become invalid, i.e. been destroye

Task Death Notifications

* Create a mach port, just like we did earlier; no need to make it
writable

* Wrap it in a dispatch source

* In the dispatch source’s cancellation method, we destroy the
notification port we just created

* |n the source handler method, we cancel both this source and
the exception source.

Task Death Notification Request

mach_port_t death_port = MACH_PORT_NULL,;

mach_port_t old_port = MACH_PORT_NULL;

kr = mach_port_allocate(mach_task_self(),
MACH_PORT_RIGHT RECEIVE, &death_port);

kr = mach_port_request_notification(
mach task self(), theTask,
MACH_NOTIFY_DEAD NAME, @, death_port,
MACH_MSG_TYPE_MAKE SEND ONCE, &old_port);

Task Death Source Cancellation

// when cancelled, reset the old port
// (this may be MACH_PORT_NULL)
mach_port_request_notification(

mach task self(), task,

MACH _NOTIFY_DEAD NAME, 0, old_port,

0, NULL);

// the source owns our port, so we’ll destroy it
mach_port_destroy(mach_task _self(),
death_port);

Task Death Source Handler

mach_msg_header_t * msqg;
msg = alloca(MSG_SIZE);

// consume the message
(void) mach_msg(msg, MACH_RCV_MSG, MSG_SIZE,
MSG_SIZE, death_port, 0, MACH_PORT_NULL);

// the task has gone-- log the crash report

// we only do this once the app 1s gone, 1n case
// a logged exception isn't fatal
backtrace_log();

// the task we're watching 1i1s gone: quit now
dispatch_source_cancel(exc_source);
dispatch_source cancel(death_source);

Running it

* Dispatch sources are created in a suspended state, so we must
call dispatch_resume() on them all

* This is a vanilla C app, so we run the event loop using
dispatch_main()

* There is no step three.

Exception Processing

Required Tasks

* Implement the three exception handler routines
* catch_exception_raise

* catch_exception raise_state

* catch_exception_raise_state identity
* Implement an exception forwarding routine

* We don’t actually handle the exceptions, we just want to
know when they happen

Exception Handler Types

* catch_exception_raise
* Smallest. Receives task, thread, exception code & data
* catch_exception_raise_state

* Adds state of the thread causing the exception, removes task
and thread ports

* catch_exception_raise_state identity

* All of the above

Forwarding Exceptions

* |terate through the old exception handlers to find the first
which wants to handle this one

* Check what type of method it wants
* Could be any of the previous three
* This is where the headache appears

* Means our forward_exception implementation should take
ALL possible parameters

* Build parameters for that method

* Call exception_raiseXXX passing those parameters, with the
handler port as the first parameter

forward_exception()

kern_return_t forward_exception(
thread _t thread,
mach_port_t task,
exception_type_t exception,
exception_data_t code,
mach_msg_type_number_t codeCount,
int xflavor,

thread state_t old _state,
mach_msg_type_number_t old_stateCnt,

thread state_t new state,
mach_msg_type_number_t xnew_stateCnt)

forward_exception()

for (portIndex = 0;
portIndex < gOldHandlerData—->maskCount;
portIndex++) {
if (gOldHandlerData—->masks[portIndex] &
(1 << exception))
{
// This handler wants the exception
break;

¥

if (portIndex >= gOldHandlerData—>maskCount) {
// nothing wanted 1it
return (KERN_FAILURE);

forward_exception()

case EXCEPTION_DEFAULT:
kr = exception_raise(port, thread, task,
exception, code, codeCount);
JEELE
case EXCEPTION_STATE:
kr = exception_raise_state(port, exception,
code, codeCount, flavor,
old state, old stateCnt,
new_state, new stateCnt);
JEELE
case EXCEPTION_STATE_IDENTITY:
kr = exception_raise_state_identity(port,
thread, task, exception, code,
codeCount, flavor, old _state,
old stateCnt, new_state,
new_stateCnt);

forward_exception()

if (behaviour !'= EXCEPTION_DEFAULT)
{

kr = thread_set state(thread, xflavor,
new_state, *new stateCnt);

return (kr);

Finally: The Exception Handlers

kern_return_t catch_exception_raise(
mach_port_t exception_port,
thread _t thread,
mach_port_t task,
exception_type_t exception,
exception_data_t code,
mach_msg_type_number_t codeCnt

kern_return_t Kkr;

backtrace task(task, thread, code, codeCnt);

kr = forward_exception(thread, task,
exception, code, codeCnt,
NULL, NULL, ©, NULL, 0);

return (kr);

Remote Backtracing

Backtracing Tasks

* Walk up the stack
* The prior stack frame address is in a known place
* Register (address)
* Register + offset (also an address)
* The return-to address is stored next to this on the stack
* Grab the process counter (current instruction address) then:
* Read the return-to address
* Read the prior frame address
* Go up to prior frame

* Rinse & repeat until you see a value of 0 or -|

Local Tracing Is (Now) Easy

* In Mac OS X 10.6,Apple opened the backtrace() function
* |t’s in libSystem.dylib, so you link it for free
* Declared in <execinfo.h>

* That function returns addresses

* Companion function—backtrace_symbols()—to fetch
function names (symbols) for each address

Not so easy for remote values

Get process counter value from a Mach thread_state_t; this
contains the registers saved by the kernel for context-swapping

The addresses contained there can’t be directly read— no
guarantee the same data is at the same address in your app

Frame addresses particularly— your stack is going to be
completely different, but its start address will likely be the same
as it’s set by convention

We need to read data from another process

e But how!

Mach Virtual Memory APIs

* The Mach system has public functions which will let you read
from any process’s memory address space

* You need a valid task-port to access that (e.g. setgid procmod)
* A few functions we would use:

* vm_map () will take a chunk of real memory used by another
process and put it into your address space (at a different
address)

* vm_read() enables you to read page-sized chunks of memory
from another process into a buffer allocated for you

* Using vm_map () will NOT copy— it acts like regular paged
virtual memory, so you can ask for a lot

HOLY SWEET &@"#
THAT'SA LOT

...which is why we
won’t do that (today)

Symbolication.framework

(Private APls w0Ot!)

Our Backtracer

if (gBacktraceLog == nil)

gBacktraceLog = [NSMutableString newl];
else

[gBacktracelLog setString: @""1;

Our Backtracer

VMUSymbo licator x symbolicator =
[VMUSymbolicator symbolicatorForTask: task];

NSArray x samples = [VMUSampler
sampleAllThreadsOfTask: task
withSymbolicator: symbolicator];

Our Backtracer

NSUInteger 1 = 0;
for (VMUBacktrace x backtrace in samples)

{

[gBacktraceLog appendFormat: @"Thread %d
(%#x)", i, [backtrace threadll];

if ([backtrace thread] == exc_thread)

[gBacktraceLog appendString: @"
Crashed"];

[gBacktraceLog appendString: @":\n"];

Our Backtracer

pointer_t x trace = [backtrace backtracel;
for (int j = 0;

j < [backtrace backtracelLengthl;

j++)

VMUSymbol * symbol = [symbolicator
symbolForAddress: traceljll;
VMUSymbo1lOwner * owner = [symbolicator
symbolOwnerForAddress: traceljll;
[gBacktraceLog appendFormat: @"%d\t%-30s
%p : %@\n", 7j,
[[owner name] UTF8Stringl],
tracel[jl, [symbol namell;

That’s It!

Yes.

Here’s what you get: (minus \n)

Thread 7 (0x3f03):

® libSystem.B.dylib 0x0000008885efca :
__semwalt_signal

1 libSystem.B.dylib 0x00000088862del :
_pthread_cond_wait

2 JavaScriptCore Ox0000008218d1a0
WTF::ThreadCondition: :timedWait (WTF: :Mutex&, double)
3 WebCore 0x00000080bd4ddl :
WebCore::LocalStorageThread::threadEntryPoint()

4 1ibSystem.B.dylib 0x0000008885d536 :
_pthread_start

5 1libSystem.B.dylib Px0000008885d3e9

thread _start

It's Also Open-Source

* Going up on github real soon now

e Two command-line tools:

e backtracer— Use backtracer —-ProcID <process_id>.
Generated the sample you just saw.

* CrashMonitor— designed to drop into your own apps to

do your own crash reporting. Have it launch another app to
send that crash report to you.

Integration with Time Machine

What we won’t cover

* Snapshots

* Used by Xcode !

* Useful for managing non-bundled collections of discrete files
* Triggering backups programatically

* BUBackUpNow() function

Who will use this!?

* Applications managing collections of data
* Address Book, Mail, iPhoto
* iTunes,iCal
* Library, Ledgers, CRM

* Apps with a desire to handle partial dataset restorations

e CoreData

Concepts and Design

Time Machine User Interface

* One large fullscreen window
* A collection of images
* Time Machine ‘windows’ aren’t (necessarily) actual windows

* Each instance is an image, usually taken from a simple window
via CGContextXXX() functions.

* Time Machine scrolls through these windows for you

* Your app is alerted when a real window is required, and your
app handles display & input for that window.

Events and Callbacks

Time Machine handles the interface for you— you only have
to provide some callback routines.

BURegisterStartTimeMachineFromDock(...);
BURegisterRequestSnapshotImage(...);
BURegisterTimeMachineDismissed(...);
BURegisterTimeMachineRestore(...);

The ‘events’ posted by Time Machine include the startup request,
actions, dismissal (cancel), restore (one or all), activate/deactivate
snapshot windows, and requests for snapshot or thumbnail
Images.

Public API

Apple has released two functions:

CSBackupIsItemExcluded(CFURLRef i1tem, Boolean * byPath);

CSBackupSetItemExcluded(CFURLRef 1item, Boolean exclude,
Boolean byPath);

These routines allow you to inform the backup system of cache

files or other oft-changed data which need not be backed up.

Anything further than this requires that we resort to accessing the
private API...

Private API

* Request notification of Time Machine invocation

* Provide callbacks for the Time Machine engine, then start Time
Machine itself

* If in a non-applicable state, don’t start time machine
* Modal loops, active document is untitled/unsaved

* Answer callbacks to provide snapshot window images
corresponding to backup data

* Handle activation and deactivation of individual snapshots

* Restore if so requested, or else revert to prior state upon
dismissal.

Startup

* When your app starts, call
BURegisterStartTimeMachineFromDock();

* Your callback returns nothing and takes no arguments.

* The callback will fire when the user clicks the Time Machine
icon in the dock. It’s still up to you to launch the Time Machine
Ul, however.

typedef void (*BUStartTimeMachineCallBack)(void);

vold BURegisterStartTimeMachineFromDock(BUStartTimeMachineCallBack
cb);

void BUStartTimeMachine(int windowNumber, CFURLRef urlForWindow,
BUAction flags);

Data Callbacks

* Upon receiving the startup call, you register your other
callbacks, to provide data and handle events

* Time Machine provides request callbacks for window snapshots
and for thumbnail images, but we’ll just use snapshots.

* To generate a snapshot image, create a window for the data at
the given URL, and call BUUpdateSnapshotlmage(), providing the
CG window number (using -[NSWindow windowNumber]) and

the provided URL as parameters.

typedef void (*BURequestSnapshotImageCallBack)(void * token,
CFURLRef backupURL);

vold BURegisterRequestSnapshotImage(void * token,
BURequestSnapshotCallBack callback);

volid BUUpdateSnapshotImage(int windowNumber, CFURLRef url);

Snapshot Events

* You must provide callbacks to be notified when snapshots are
focussed or blurred.

* When these callbacks are called, the application must display or
remove a window at the given coordinates.

* When done processing, call BUActivatedSnapshot() or
BUDeactivatedSnapshot() as appropriate.

typedef void (*BUActivateSnapshotCallBack)(void * token, CFURLRef
backupURL, CGRect workingBounds);

typedef void (*BUDeactivateSnapshotCallBack)(void * token, CFURLRef
backupURL) ;

volid BURegisterActivateSnapshot(void * token,
BUActivateSnapshotCallBack callback);

vold BURegisterDeactivateSnapshot(void * token,
BUDeactivateSnapshotCallBack callback);

void BUActivatedSnapshot(int windowNumber, CFURLRef url);

vold BUDeactivatedSnapshot(int windowNumber, CFURLRef url);

Action Callbacks

* Two main actions: restore and dismiss

* Restore provides a flag to indicate whether to restore all items
or just a selection.

* Dismissal only triggers after the Time Machine Ul has gone away.

* To programatically dismiss, call BUTimeMachineAction(1);

typedef void (*BUTimeMachineDismissedCallBack)(void * token);

typedef void (*BUTimeMachineRestoreCallBack)(void * token, CFURLRef
backupURL, CFURLRef 1iveURL, Boolean restoreAll,
CFDictionaryRef userInfo);

vold BURegisterTimeMachineDismissed(void * token,
BUTimeMachineDismissedCallBack callback);

vold BURegisterTimeMachineRestore(void * token,
BUTimeMachineRestoreCallBack calback);

void BUTimeMachineAction(BUAction action);

AQTimeMachineController

* Implemented in Objective-C 2.0
* Singleton class
* Designed to handle most of the work for you
* You shouldn’t need to call BUxxxx() methods yourself
* You implement a delegate to provide application-specific data

* |deally this delegate should be concerned only with Time
Machine, and should be your only Time Machine-handling class

Properties

* @property(assign) id<AQTimeMachineDelegate> weak
delegate;

* Synchronized access, non-retaining
* @property NSRect workingBounds;

* The current snapshot bounds set by Time Machine
* @property BOOL changedltemsOnly;

* YES if the Ul should only show changed items
* @property BOOL inTimeMachine;

* Check to see if Time Machine actions should be performed

General Functions

* + (AQTimeMachineController *) timeMachineController;
* Fetch the singleton instance

* - (BOOL) canEnterTimeMachine;
* A simple check, will call the delegate

* - (IBAction) browseBackups: (id) sender;
* When you want your own Time Machine button

* - (void) dismissTimeMachine;

* Close down the Time Machine Ul

* - (void) invalidateSnapshotlmages;

* When your Ul has changed, updates snapshots

Controller Tasks

* Handles Time Machine startup notifications
* Requires a delegate to be set prior to this

 Stores the window state of the initial window, and restores this
state when Time Machine is dismissed

 Miniaturized, visible

* Maintains a list of window controller to URL mappings, one for
each snapshot window

* Handles updates to snapshot images
* Activates and deactivates snapshots, notifying delegate

* Calls delegate when a restore action is requested

AQTimeMachineController Code

Delegate Tasks

* Determines whether the app can enter Time Machine

* Creates and returns controllers and data paths for the live
window and any snapshot windows requested

* Implements data restoration
* Optionally:
* Performs setup before & after entering Time Machine

* Performs actions before & after snapshot activation/
deactivation

’

* Makes any changes required for ‘show changed items only

* Any app-specific cleanup when Time Machine is dismissed

An NSDocument-based Delegate

Useful Data

* Keep a record of all snapshot NSDocuments, indexed by path
or URL

* Keep track of the current document

* Store any document user-interface state which is likely to
change while in Time Machine

e Search box contents, list selections

* Ensure that no documents are editable while in Time Machine

-canEnterTimeMachine

* Check for modal panels:

* [[[INSRunLoop mainRunLoop] currentMode]
isEqualToString: NSModalPanelRunLoopMode]

* Check for an open & stored current document:

* [[NSDocumentController sharedDocumentController]
currentDocument]

* Document must have window controllers

* No sheet should be attached:

* [[ctrl window] attachedSheet]

Snapshot window controllers

* You can create NSDocuments for backup snapshots, but it’s a
good idea to limit them a little

* Create using -[NSDocumentController
makeDocumentWithContentsOfURL:of Type:error:]

* Use -makeWindowControllers to setup the controllers,
rather than letting NSDocument put itself onscreen

Updating snapshots

* Implement the optional notification handlers to store and set
data at appropriate times

* Store Ul state:
- Before Time Machine activates
- When deactivating snapshots
* Set Ul state:
- When activating snapshots
- When restoring or dismissing Time Machine

* Also install your own handlers to invalidate & update snapshots
In response to user activity

* Notifications, delegates, KVO

Example Delegate Code

| Want Friends!

e Twitter— @alanQuatermain
* NB: My name is NOT Alan

* Web— http://quatermain.tumblr.com/

* This contains an email link, LinkedIn, Facebook (sigh), etc.

http://quatermain.tumblr.com

